Solare Wärmewende – Im Gespräch: Felix Landsberg (HIR) und Jan Walter (Difu)

Was haben Kommunen von Sonne im Wärmenetz? Wie können Kommunen passende Flächen für ein Solarthermie-Kollektorfeld finden? Und wie kann das Projekt SolnetPlus dabei helfen? Felix Landsberg vom Hamburg Institut und Jan Walter vom Deutschen Institut für Urbanistik (Difu) sprechen hier im Podcast-Style über ihren Draht zu den solaren Wärmenetzen.

Asma Sohail2023-09-11T13:11:13+02:00Montag, 11. September, 2023|

FAQ – Fragen und Antworten zur solaren Fernwärme

FAQ-Fragen und Antworten zur solaren Fernwärme Frankfurt, Juni 2023 2 Dokumenten-Informationen: Autoren: Thomas Pauschinger, Kibriye Sercan-Çalışmaz AGFW-Projektgesellschaft für Rationalisierung Information und Standardisierung mbH (AGFW) Dirk Mangold, Anna Ulrichs Solites - Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme (Solites) Felix Landsberg, Marleen Greenberg Hamburg Institut Research gGmbH (HIR) Paul Ratz, Deutsches Institut für Urbanistik gGmbH (Difu) Kontakt: Kibriye Sercan-Çalışmaz AGFW-Projektgesellschaft für Rationalisierung, Information und Standardisierung mbH, Stresemannallee 30, 60596 Frankfurt, www.agfw.de Version: Juni 2023 Arbeitspaket: AP3 Aktivierungsinitiative Wärmeversorgungsbranche Produkt: Handreichung „FAQ-Fragen und Antworten zur solaren Fernwärme“ Das vorliegende Dokument entstand im Rahmen des Verbundvorhabens „SolnetPlus – Solare Wärmenetze als eine Lösung für den kommunalen Klimaschutz. Das diesem Bericht zugrundeliegende Vorhaben wird mit Mitteln des Bundesministeriums für Wirtschaft und Klimaschutz im Rahmen der Nationalen Klimaschutzinitiative gefördert (FKZ: 67KF0119A-D). Haftungsausschluss: Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder die Autoren noch der Fördermittelgeber übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. 3 Inhaltsverzeichnis 1 Technik Solarthermie ........................................................................................................ 5 1.1 Welche Arten von Kollektoren sind für die Einbindungen in Wärmenetze geeignet? A) ........ 5 1.2 Ist eine Nachführung der Sonnenkollektoren sinnvoll? A)....................................................... 5 1.3 Welche Möglichkeiten zum Frostschutz bestehen? S)............................................................ 6 1.4 Nimmt die Effizienz der Sonnenkollektoren über die Betriebsdauer ab? S) ........................... 6 1.5 Sind Hybridkollektoren (Strom und Wärme) für die solare Fernwärme geeignet? A) ............. 7 2 Wärmespeicher ................................................................................................................. 7 2.1 Benötigen in Wärmenetze eingebundene Solarthermieanlagen Wärmespeicher? A) ............ 7 2.2 Welche Möglichkeiten der saisonalen Wärmespeicherung bestehen? S) .............................. 8 3 Freiflächenentwicklung ..................................................................................................... 9 3.1 Sollten Kollektorfelder nicht eher auf Gebäudedächer? A) ..................................................... 9 3.2 Wieviel Landfläche ist zur Aufstellung einer bestimmten Kollektorfläche erforderlich? S) .... 10 3.3 Welche Flächen sind für eine Freiflächen-Solarthermieanlage nutzbar? H) ......................... 10 3.4 Wie weit kann die Freifläche vom Einbindepunkt entfernt sein? S) ...................................... 11 3.5 Welche Möglichkeiten zur mehrfachen Flächennutzung gibt es? H) .................................... 11 3.6 Kann die Fläche mehrfach zur Wärmeerzeugung genutzt werden (z.B. zusätzlich für ein Wärmepumpen-Sondenfeld)? A) ....................................................................................................... 12 3.7 Wie werden Kollektorfelder auf Freiflächen errichtet? A) ...................................................... 12 3.8 Wie gehe ich bei der Suche und Entwicklung von Freiflächen vor? H) ................................. 13 4 Umweltbelange ................................................................................................................14 4.1 Wie ist eine naturnahe Gestaltung von Freiflächenanlagen möglich? H) ............................. 14 4.2 Wie integrieren sich Anlagen gut in die Landschaft? H)........................................................ 14 5 Netzeinbindung ................................................................................................................15 5.1 Bis zu welchen Netztemperaturen kann Solarthermie eingesetzt werden? A) ..................... 15 5.2 Warum wirken sich niedrige Vor- und Rücklauftemperaturen günstig aus? S) ..................... 15 5.3 Ist eine stabile Versorgung bei fluktuierender Einstrahlung möglich? S) .............................. 16 5.4 Wie wirkt sich die fluktuierende Leistung auf das Wärmenetz aus? S) ................................. 16 5.5 Welche Möglichkeiten der Einbindung gibt es bei größeren FW-Netzen? S) ....................... 17 5.6 Mit welchen weiteren Wärmeerzeugern lässt sich Solarthermie kombinieren? A) ............... 17 6 Auslegung und Ertrag ......................................................................................................18 4 6.1 Welchen Wärmeertrag und welche Leistung erbringt eine Solarthermieanlage? S) ............ 18 6.2 Welche solaren Deckungsanteile lassen sich erreichen? S) ................................................ 19 6.3 Mit welchem Wärmeertrag je Hektar Landfläche kann man rechnen? S) ............................. 19 6.4 Wie funktionieren Verfahren zu Ertragsgarantie? A) ............................................................. 19 7 Wirtschaftlichkeit ..............................................................................................................20 7.1 Wie hoch sind die Investitionskosten für Solarthermieanlagen? A) ...................................... 20 7.2 Wie hoch sind die Kosten für Betrieb und Instandhaltung einer Solarthermieanlage? A) .... 21 7.3 Welche Wärmegestehungskosten werden erreicht? A) ........................................................ 21 7.4 Wie werden die Kosten für die Landfläche berücksichtigt H) ................................................ 22 7.5 Welche Fördermöglichkeiten für Solarthermieanlagen gibt es? A) ....................................... 22 8 Projektentwicklung ...........................................................................................................23 8.1 Welche Phasen sind bei der Projektentwicklung zu berücksichtigen? H) ............................. 23 8.2 Welche Genehmigungen und Gutachten sind einzuholen? H) ............................................. 23 8.3 Welche lokalen Akteure sind einzubinden? H) ...................................................................... 23 8.4 Was können Kommunen vorbereitend tun? D) ..................................................................... 24 5 Hinweis zur Verwendung dieses Dokuments Das vorliegende Dokument „FAQ-Fragen und Antworten zur solaren Fernwärme“ wurde als Vorlage und Antwortenpool für FAQ-Bereiche z.B. auf Internetseiten oder Leitfäden zum Thema solare Fernwärme erstellt. Inhalte aus diesem Dokument können mit Verweis auf dieses Dokument als Quelle verwendet werden. Die gelisteten Antworten wurden von den Projektpartnern des Vorhabens SolnetPlus jeweils federführend erstellt und sind nachfolgend gekennzeichnet mit A) AGFW, S) Solites, H) HIR und D) Difu. 1 Technik Solarthermie 1.1 Welche Arten von Kollektoren sind für die Einbindungen in Wärmenetze geeignet? A) Im Anwendungsbereich der Fernwärme kommen bei Netztemperaturen bis rund 110 °C Flachkollektoren und Vakuumröhrenkollektoren zum Einsatz. Entscheidend sind hier die Vor- und Rücklauftemperaturen des Wärmenetzes an der Einbindestelle in der Periode von März bis Oktober. Die Systemtechnik der spezialisierten Anbieter ist auf den Einsatz in Wärmenetzen und für große Kollektorfelder im Megawattbereich optimiert. Zum Einsatz kommen oft Groß-Kollektormodule (Reduzierung von Anschlüssen und Montagezeiten) mit guter Effizienz bei höheren Betriebstemperaturen sowie mit einer optimierten Hydraulik für große Kollektorfelder (Reduzierung der Pumpenarbeit und Anschlussleitungen). Bei höheren Netztemperaturen sind konzentrierende Kollektoren wie z.B. Parabolrinnenkollektoren geeignet, die für solare Prozesswärme und Kraftwerksanwendungen im Bereich von 100 - 400 °C entwickelt wurden. 1.2 Ist eine Nachführung der Sonnenkollektoren sinnvoll? A) Ob sich eine ein- oder zweiachsige Nachführung von Kollektoren lohnt, ergibt sich aus einer Kosten-Nutzen-Analyse. Besonders zu beachten ist hier der Betriebs- und Instandhaltungsaufwand für bewegte Teile und Antriebe der Nachführung. Generell empfiehlt es sich, die Anlagen so einfach wie möglich zu halten. Konzentrierende Kollektoren (wie z.B. Parabolrinnenkollektoren) müssen zumindest einachsig dem Sonnenstand nachgeführt werden. 6 1.3 Welche Möglichkeiten zum Frostschutz bestehen? S) In den Wintermonaten ist die Anlagentechnik des Kollektorkreises durch entsprechende Frostschutzvorkehrungen vor einem Einfrieren zu schützen. In der Praxis haben sich hier zwei Verfahren vielfach bewährt. Passiver Frostschutz: Verwendung eines Wasser-Propylenglykol-Gemisches als Wärmeträgermedium im Kollektorkreis. Je nach Klima am Standort der Solaranlage liegt der Propylenglykolanteil meist zwischen 20 und 40 %. Hierbei werden speziell für die in einer Solaranlage auftretenden Randbedingungen optimierte Fertiggemische verwendet, die auch als Solarflüssigkeit bezeichnet werden. Diese Solarflüssigkeit enthält oft zusätzliche Korrosionshemmer. Durch einen einfachen pH-Wert-Test kann die Solarflüssigkeit überprüft und bei Bedarf ausgetauscht werden. Die Praxiserfahrung zeigt, dass dies nur selten und meist erst nach einigen Betriebsjahren erforderlich werden kann. Bei sehr hohen Temperaturbelastungen kann die Solarflüssigkeit altern. Einzelne Stagnationsfälle führen bei fachgerecht realisierten Solaranlagen zu keinen Schäden. Aktiver Frostschutz bei Wasser als Wärmeträgermedium: Sehr gut gedämmte Kollektorbauteile wie z.B. Vakuumröhrenkollektoren kühlen auch bei langen Kälteperioden nur wenig aus. Um ein Einfrieren insbesondere des Wassers in den Verbindungsleitungen zu vermeiden, wird das Wasser im gesamten Kollektorkreis abhängig von der Außentemperatur regelmäßig umgewälzt. Das in den Vakuumröhren auch bei geringer Solareinstrahlung leicht erwärmte Wasser erhöht die Wassertemperatur in den Verbindungsleitungen. Bei sehr tiefen Außentemperaturen muss dem Kollektorkreis Wärme aus dem Fernheizwasser zugeführt und somit der Kollektorkreis frostfrei gehalten werden. Bei hierauf optimierten Regelungen des Kollektorkreises kann der Wärmebedarf für die Frostfreihaltung auf rund 2 bis 4% des Jahreswärmeertrages beschränkt werden. 1.4 Nimmt die Effizienz der Sonnenkollektoren über die Betriebsdauer ab? S) Viele Messungen an Realanlagen und umfangreiche Forschungsprojekte zeigen, dass die Effizienz der Solarkollektoren auch nach vielen Betriebsjahren (20 Jahre) noch dem Neuprodukt entspricht. Sie sinkt nicht oder in seltenen Fällen leicht um insgesamt weniger als 10% [SpeedColl 2015, SpeedColl2 2020]. 7 Solarkollektoren müssen bei Normalverschmutzungen und Anstellwinkeln im Rahmen der deutschen Dachdeckerrichtlinien (z.B.18 Grad Neigung gegen die Horizontale und steiler) nicht gesondert gereinigt werden. Nur bei stark verschmutzenden Umweltbedingungen kann eine Reinigung der Glasflächen zu empfehlen sein. Referenzen: SpeedColl 2015: SpeedColl „Entwicklung beschleunigter Alterungsprüfverfahren für solarthermische Kollektoren und deren Komponenten“, 2011 bis 2015, www.speedcoll.de SpeedColl2 2020: „Gebrauchsdauerabschätzung für solarthermische Kollektoren und deren Komponenten“, 2016 bis 2020, www.speedcoll2.de 1.5 Sind Hybridkollektoren (Strom und Wärme) für die solare Fernwärme geeignet? A) Hybridkollektoren eignen sich z.B. zur gemeinsamen Strom- und Niedertemperatur-Wärmeerzeugung für eine Wärmepumpe in Neubauten oder energetisch sanierten Gebäuden. Sie sind nicht geeignet, um Wärme auf Vorlauftemperaturniveau von Fernwärmenetzen zu erzeugen. Die Wärme steht in der Regel mit max. 35° C zur Verfügung, da die Stromerzeugung von Hybridkollektoren bei steigenden Temperaturen abnimmt. 2 Wärmespeicher 2.1 Benötigen in Wärmenetze eingebundene Solarthermieanlagen Wärmespeicher? A) Die Erforderlichkeit eines Wärmespeichers hängt vorrangig von der Auslegung der Solarthermieanlage und dem Bedarf der Netzseite ab. Diese wird durch den „solaren Deckungsanteil“ beschrieben, d.h. dem Verhältnis zwischen solarem Jahresertrag und dem Jahreswärmebedarf im Wärmenetz bzw. am Einbindepunkt. Typische Auslegungsfälle sind: » Bei niedrigen solaren Deckungsanteilen bis ca. 5 % kann i.d.R. die Solarwärme direkt und zu jedem Zeitpunkt vom Wärmenetz aufgenommen werden. Dies kann ohne Wärmespeicher erfolgen. Vielfach hat sich jedoch ein kleinvolumiger Wärmespeicher bewährt, der als hydraulische Weiche fungiert und eine bessere Steuerung der Netzpumpe ermöglicht. » Bei solaren Deckungsanteilen von rund 15 %, deckt die Solarthermie i.d.R. den Sommerbedarf im Wärmenetz und es ist ein Mehrtages-Pufferspeicher erforderlich (Anhaltswert 0,2 m³/m² Bruttokollektorfläche). Ein solcher Pufferspeicher ist insbesondere 8 erforderlich, wenn die Leistung der Solarthermieanlage die Engpassleistung an der Einbindestelle übersteigt. » Bei höheren solaren Deckungsanteilen nimmt das je m² Bruttokollektorfläche notwendige Wärmespeichervolumen stetig zu. Bei einem solaren Deckungsanteil von beispielsweise 50 % ist ein Langzeitwärmespeicher / saisonaler Wärmespeicher erforderlich (Anhaltswert 2 m³/m² Bruttokollektorfläche). Das geeignete Speichervolumen hängt von einer Reihe von Parametern ab und sollte von Fachkundigen mittels eines Rechenprogramms ermittelt werden. Bei komplexeren Konfigurationen und höheren solaren Deckungsanteilen empfiehlt sich eine Anlagensimulation auf Basis von Stundenwerten für ein gesamtes Betriebsjahr. 2.2 Welche Möglichkeiten der saisonalen Wärmespeicherung bestehen? S) Oberirdische Stahlspeicher sind seit langer Zeit Stand der Technik. Diese werden meist täglich be- und entladen und haben dadurch einen hohen Wärmenutzen. Saisonale Wärmespeicher hingegen dienen zur saisonalen Speicherung von Wärme. Diese werden daher im Extremfall im Sommer beladen und im Winter entladen. Durch den geringen Wärmenutzen müssen diese saisonalen Wärmespeicher wesentlich günstiger gebaut werden können. Seit ca. 1995 wurden hierzu vier verschiedene Speicherbauarten entwickelt: » Behälter-Wärmespeicher sind größtenteils im Untergrund integrierte Stahlbetonbehälter, die mit Wasser gefüllt sind. In der Bautiefe von 5–15 m sollte möglichst kein Grundwasser vorhanden sein. Die Wärmespeicher können als begehbare Hügel in das zu versorgende Gebiet integriert werden. Die Be- und Entladung des Speichers erfolgt mit Hilfe einer Schichtbeladeeinrichtung. » Erdbecken-Wärmespeicher werden ebenfalls in 5–15 m Tiefe in den Untergrund eingegraben. Es wird ein künstlicher "Teich" angelegt, mit Speichermaterial gefüllt und mit einem Deckel verschlossen. Als Speichermaterial wird Wasser, Wasser-Kies-Gemisch oder Wasser-Erdreich-Gemisch genutzt. Erdbecken-Wärmespeicher sind eher flach und weisen eine große Oberfläche auf. Be- und Entladen wird der Speicher entweder direkt oder indirekt. Bei einem direkten Be- und Entladen wird das erwärmte Wasser direkt in den Speicher eingespeist und entnommen. Beim indirekten Be- und Entladen ist der Speicher mit wasserdichten Kunststoff-Rohrleitungen durchzogen, welche keinen Kontakt mit dem Speichermaterial haben. » Erdsonden-Wärmespeicher nutzen den Untergrund zur Wärmespeicherung. Die gewonnene Wärme wird den Erdsonden zugeführt, in denen Wasser als Wärmeträger zirkuliert. Das Wasser gibt in der Solarsaison die Solarwärme an den Untergrund ab. In der Heizphase wird den Erdsonden kühleres Wasser zugeführt. Die Erdsonden entziehen dem Untergrund so die gespeicherte Wärme. » Aquifer-Wärmespeicher nutzen ebenfalls den Untergrund. Sie verwenden unterirdische, wasserführende Gesteinsschichten zur Wärmespeicherung, die durch Brunnenbohrungen 9 erschlossen werden. Die Bohrtiefe hängt hierbei von der Tiefe des zu nutzenden Aquifers ab. Als Speichermaterial dient das angetroffene Grund- oder Tiefenwasser. Das nutzbare Wasservorkommen muss durch geeignete geologische Formationen eingeschlossen sein, da sonst die gespeicherte Wärme nicht wieder entnommen werden kann. Die Wirtschaftlichkeit eines saisonalen Wärmespeichers ist neben seiner Bauweise stark durch die Systemeinbindung bestimmt. Um diese wirtschaftlich zu optimieren, ist meist eine dynamische Systemsimulation zu empfehlen, die die Systemeinbindung der Solarthermieanlage und des Wärmespeichers in das Fernwärmesystem in Stundenwerten über ein ganzes Betriebsjahr betrachtet. Die für das Gesamtsystem (Erzeuger und Wärmenetz) wirtschaftlichste Lösung kann auch einen Wärmespeicher erfordern, der nicht die günstigsten Baukosten aller Speichervarianten aufweist. Quelle: www.saisonalspeicher.de 3 Freiflächenentwicklung 3.1 Sollten Kollektorfelder nicht eher auf Gebäudedächer? A) Zwei Voraussetzungen für günstige Wärmegestehungskosten und somit einen wirtschaftlichen Betrieb von solarthermischer Wärmeerzeugung sind zum einen eine ausreichende Anlagengröße (Skaleneffekt) und zum anderen eine einfache, zeitsparende und kostengünstige Montagetechnik (siehe FAQ 3.7). Alternativen sind hier die Montage von Kollektorfeldern auf Gebäudedächern oder die Nutzung von Freilandflächen. Obwohl in den letzten Jahren auch für die Dachintegration bzw. Dachmontage von Kollektoren hochwertige Systemtechnik entwickelt wurde, sind die Kosten für die Realisierung von Kollektorfeldern bei Freiflächenanlagen im Vergleich deutlich geringer. Die kosteneffiziente Realisierung großer Freiflächen-Kollektorfelder mit mehreren 10 000 m² Kollektorfläche ist daher für die künftige Entwicklung der solaren Fernwärme essenziell. Die zusätzliche Nutzung ausreichend großer und geeigneter Gebäudedächer stellt eine sinnvolle Ergänzung dar. Die Eignung der Gebäudedächer ist hierbei stets zu prüfen (z.B. ausreichende Dachstatik). Im Vergleich zu Strom erzeugenden Photovoltaikmodulen zeigen Solarthermiekollektoren eine wesentlich geringere Empfindlichkeit auf kleinere Verschattungen. Es empfiehlt sich entsprechend den lokalen Gegebenheiten die Flächennutzungsprioritäten von Solarthermie- und Photovoltaikanlagen in Bezug auf ortsnahe Frei- und Gebäudeflächen zu betrachten. 10 3.2 Wieviel Landfläche ist zur Aufstellung einer bestimmten Kollektorfläche erforderlich? S) Der jährliche Solarertrag ist am größten, wenn die Solarkollektoren nach Süden ausgerichtet sind und sich die einzelnen Kollektorreihen nicht oder nur in den strahlungsarmen Wintermonaten verschatten. Eine kleinere Abweichung von der Südausrichtung bringt kaum Ertragseinbußen. Je nach Systemeinbindung und dem gewünschten Deckungsanteil ergibt sich die beste Ausrichtung und Neigung (Aufstellwinkel gegen die Horizontale) der einzelnen Kollektoren. Diese bestimmen durch den Sonnenverlauf die Verschattung der Kollektorreihen. Hieraus ergibt sich der zu empfehlende Abstand und damit der Flächenbedarf. Die meisten auf Freiflächen realisierten Kollektorfelder weisen einen Flächenbedarf auf, der das 2-fache bis 2,3-fache der Bruttokollektorfläche beträgt. 3.3 Welche Flächen sind für eine Freiflächen-Solarthermieanlage nutzbar? H) Einschränkungen in der Flächennutzung ergeben sich aus den Planungsvorgaben auf Ebene des Landes, des Landkreises und der Kommune. Flächen, die anderen Nutzungen vorbehalten sind, sind dort festgeschrieben und begründet. Bestimmte Flächen werden darin generell ausgeschlossen wie z.B. Naturschutzgebiete während andere unter einem Abwägungserfordernis eingestuft werden wie z.B. Landschaftsschutzgebiete, um dort Solaranlagen zu errichten. Nach Vorgaben vieler regionaler Raumordnungsprogramme oder Landesentwicklungspläne sind in der Regel Flächen, die sich in räumlicher Nähe zu bestehenden Infrastrukturen wie z.B. Autobahnen, Bahnschienen oder Gewerbegebieten befinden bevorzugt zu nutzen. Eine kurze Anbindelänge zum Wärmenetz ist in diesen Bereichen in den meisten Fällen allerdings nicht der Fall und individuell abzugleichen. Konversionsflächen wie u.a. Kiesgruben oder alte Kohlelager sind meistens auch als Vorzugsflächen genannt und teils ohne langes Bebauungsplanverfahren umsetzbar. Falls in den Flächennutzungsplänen (Sonderbaufläche/Sondergebiet „Solarenergie“) oder in B-Plänen (Sondergebiet „Solaranlagen“ oder „Solarthermie“) schon Flächen festgeschrieben sind, können diese genutzt werden. Daneben empfiehlt sich die Nutzung von Flächen, deren festgeschriebene Nutzung mit der Solarthermie vereinbar ist wie » Gewerbegebiete: Zulässig gem. § 8 BauNVO » Industriegebiete: Zulässig gem. § 9 BauNVO 11 Auf Grund der hohen Bodenpreise in Gewerbe- oder Industriegebieten und fehlender aktiver Entwicklung von Flächen zur Energieerzeugung ist in der Regel ein B-Plan Verfahren nötig. Damit ein B-Plan Verfahren möglichst ohne unerwartete Verzögerungen durchlaufen werden kann, empfiehlt es sich, als Projektträger frühzeitig mit den entsprechenden Behörden in Kontakt zu treten und bestenfalls mit der Kommune gemeinsam auf Basis einer strukturierten Flächenanalyse eine Solarstrategie zu entwickeln. Die besonderen Belange der Solarthermie wie die siedlungsnahe Umsetzung werden gemeinsam mit der Kommune erörtert und im Rahmen der Abwägungsprozesse eingeordnet. Kommunen sollten im Rahmen kommunaler Klimaschutzbemühungen Flächen zur Energienutzung aktiv im Rahmen der Flächenplanung ausweisen. Eine strukturierte Flächenanalyse gemeinsam mit dem Projektträger der Solarthermie bietet einen guten Auftakt, um die Flächenplanung “von der Fläche zum Projekt” zu denken und klimaneutrale Versorgung mit Strom und Wärme und kommunale Flächenplanung aufeinander aufzubauen. 3.4 Wie weit kann die Freifläche vom Einbindepunkt entfernt sein? S) Jede Solarthermieanlage benötigt eine Vor- und eine Rücklaufleitung, mit der sie in die Wärmeversorgung eingebunden wird. Diese Leitungen verursachen Installationskosten sowie Wärme- und Temperaturverluste. Wird angenommen, dass der Wärmeverlust der Anschlussleitung maximal 2% eines durchschnittlichen Solarwärmeertrags betragen soll, ergibt sich ein Anhaltswert von maximal 1 km Anschlussleitungslänge je 10.000 m² Bruttokollektorfläche. 3.5 Welche Möglichkeiten zur mehrfachen Flächennutzung gibt es? H) Die Mehrfachnutzung wird oft auch als Multicodierung bezeichnet. Hierbei wird eine Fläche nicht nur zur Erzeugung solarer Wärme genutzt, sondern es besteht parallel noch mindestens eine weitere Nutzungsart. Die Art der Mehrfachnutzung lässt sich wie folgt unterscheiden: » Soziale Multicodierung: Neben der energetischen Nutzung wird auch ein sozialer Mehrwert auf oder angrenzend zu der Fläche geschaffen. Die Ausgestaltung kann dabei je nach lokalen Anforderungen oder Wünschen sehr unterschiedlich ausfallen. In dicht bebauten Bereichen kann z.B. ein angrenzender Bürgerpark zur Naherholung angelegt werden, der neben der Fläche Freiraum bietet. In Solarparks in Randbereichen der Stadt können Natur- 12 oder Energielehrpfade mit Aussichtsplattformen kombiniert werden, um den Park für Ausflüge oder Lehrfahrten attraktiv zu gestalten. » Ökologische Multicodierung: Bei der ökologischen Multicodierung liegt der Fokus darauf die Fläche rund um und ggf. unter den Modulen möglichst wertvoll für Flora und Fauna zu gestalten. Was genau eine wertvolle Gestaltung ausmacht, ist an die Gegebenheiten und bestehenden Lebensräume vor Ort anzupassen möglichst in gemeinsamer Abstimmung mit den lokalen Behörden zu entwickeln. Kleinteilige Habitate lassen sich u.a. durch Totholzhaufen oder sandige Böschungen gestalten. Durch die Anlage von Tümpeln oder Teichen können Feuchtbiotope geschaffen werden. Hier gilt es die lokalen Anforderungen und Möglichkeiten früh in die Planung einzubinden und die Planung an den gewünschten ökologischen Zielzustand der Flächen auszurichten. » Landwirtschaftliche Multicodierung: Ein zusätzlicher landwirtschaftlicher Nutzen kann z.B. durch die Schafsbeweidung der Flächen zwischen den Modulen erreicht werden. Die natürliche Art der Mahd bringt viele Vorteile mit sich. Durch die im Vergleich zur maschinellen Bearbeitung der Flächen eher unregelmäßige Mahd, bleibt das Blütenangebot durchgehend erhalten. Über das Fell, die Klauen und den Kot verteilen die Schafe die Diasporen der Pflanzen. Damit sich Schafe und Lämmer nicht den Modultischen verletzen können, ist schon in der Planungsphase darauf zu achten, dass keine scharfen Kanten gelassen werden. Wird ein ausreichender Abstand zwischen den Modulreihen geplant (ca. 6m) können die Flächen zwischen den Reihen auch weiterhin mit großen Maschinen bewirtschaftet werden. Bei der Verwendung kleinerer Maschinen kann der Abstand entsprechend verringert werden. Die Arten der Multicodierung sind in der Umsetzung keineswegs strikt voneinander getrennt oder schließen sich gegenseitig aus, sondern sollten immer in bestmöglicher Kombination miteinander gedacht und umgesetzt werden. 3.6 Kann die Fläche mehrfach zur Wärmeerzeugung genutzt werden (z.B. zusätzlich für ein Wärmepumpen-Sondenfeld)? A) Sowohl Solarthermiefelder als auch oberflächennahe Geothermie-Sondenfelder für Wärmepumpen sollten bevorzugt ortsnah zum Wärmenetz liegen. Generell bietet eine solche Doppeltnutzung der Freifläche eine interessante Synergie bei kombinierter Nutzung von Solarthermie und Wärmepumpen für die Wärmeerzeugung. Größere, vorwiegend zum Heizen genutzte Erdwärmesondenfelder sollten über die Sommermonate regeneriert werden, was z.B. durch eine Solarthermieanlage erfolgen kann. Das Konzept wurde in Deutschland bisher noch nicht realisiert und erprobt. 3.7 Wie werden Kollektorfelder auf Freiflächen errichtet? A) Für die Errichtung von großen Kollektorfeldern sind geeignete Unterkonstruktionen (i.d.R. Stahl oder Aluminium) und Montagesysteme zur Aufnahme von Kollektor-Großmodulen 13 marktverfügbar. Eine Fundamentierung im Boden dient im Wesentlichen zur Aufnahme von Wind- und Schneelasten auf dem Kollektorfeld und wird meist als Rammfundamentierung (eingerammte Stahlprofil-Stützen) realisiert. Lässt die Bodenbeschaffenheit keine Rammfundamentierung zu (weicher oder felsiger Boden, Deponieflächen), kann die Fundamentierung über vorgefertigte Betonfundamente erfolgen. Die Montage ist in beiden Fällen reversibel, d.h. die Bodenbeschaffenheit kann zu einem späteren Zeitpunkt wieder vollständig hergestellt werden. Es findet keine bzw. im Fall von Betonfundamenten nur eine geringfügige Bodenversiegelung statt. 3.8 Wie gehe ich bei der Suche und Entwicklung von Freiflächen vor? H) Im ersten Schritt erfolgt eine Bestandsaufnahme der planerischen Vorgaben auf Landes- und Regionalebene und ggf. bestehender Voruntersuchungen. Auf kommunaler Ebene ist der Flächennutzungsplan zu betrachten. Auf Basis der Vorgaben sind die entsprechenden Layer und Daten (häufig öffentlich verfügbar, ggf. zusätzliche Daten bei Kommune erfragen) möglichst in einem Geoinformationssystem darzustellen und mit den Netzeinschränkungen und -anforderungen zu verschneiden. Über die Vorgaben der Ausschluss-, Abwägungs- und Positivbereiche auf Basis der Bestandsaufnahme kann eine Priorisierung in unterschiedliche Bereiche erfolgen, um darzustellen wo die raumplanerischen Widerstände am geringsten sind und möglichst Positivbereiche (i.d.R. in der Nähe von bestehenden räumlich relevanten Infrastrukturen) durch die Anlagenplanung belegt werden. In Ausschlussbereichen ist die Umsetzung nach den Vorgaben der Flächenplanung ausgeschlossen und kann nicht weiterverfolgt werden. In Bereichen, die einem Abwägungskriterium unterliegen, ist die Umsetzung nicht ausgeschlossen, allerdings liegen in diesem Bereich andere Belange vor wie z.B. Landschaftsschutzbereiche. Diese führen nicht zum Ausschluss, sollten aber aufgenommen werden, um abzubilden, dass in diesen Bereichen keine priorisierte Umsetzung erfolgen sollte. Über die Positivbereiche soll eben dieser Bereich der priorisierten Umsetzungen erfasst werden. Die Ergebnisse sind im Dialog mit dem Stadtplanungsamt bezüglich der Stadtentwicklung zu diskutieren. Zusätzlich sollte der Austausch mit den lokalen Naturschutzverbänden gesucht werden, um das lokale Wissen bezüglich besonders schützenswerter Bereiche in die Untersuchung aufzunehmen. Technisch-wirtschaftliche Vorgaben zur Netzeinbindung und die möglichen Entfernungen zum nächsten Einspeisepunkt bilden die Grundlage zur Machbarkeit der Umsetzung. Am Ende steht die Akquisefähigkeit der Fläche. Gibt es kein Interesse oder 14 keine Möglichkeit seitens der Flächenbesitzenden, die Fläche zu verkaufen oder zu verpachten, muss auf Flächen mit geringerer Priorisierung zurückgegriffen werden. 4 Umweltbelange 4.1 Wie ist eine naturnahe Gestaltung von Freiflächenanlagen möglich? H) Zur ökologischen Gestaltung von Freiflächenanlagen gibt es inzwischen mehrere erprobte Mittel. Der Einsatz von heimischem Saatgut (Gräser, Kräuter, Wildblumen) auf der Fläche der Anlage fördert beispielsweise nicht nur Pflanzen- sondern auch Insektenvielfalt, bietet zudem Nahrungsquellen für weitere Tiere und ermöglicht die Vernetzung von Biotopen. Das Einbeziehen von Einzelelementen wie Totholz, Steinhaufen oder Ähnlichem kreiert wichtige (Teil-)Lebensräume, die für verschiedene Tierarten für Nahrung, Fortpflanzung, Unterschlupf etc. von Bedeutung sind. Hierbei ist auf die Verwendung von ortsheimischen Materialien zu achten. Bei der Wahl von Modulhöhe und –abstand sollten ökologische Aspekte wie Beschattung von Pflanzen oder ggf. Zugang für beweidende Schafe mitgedacht werden. Auch die durch den Bau entstehenden Unebenheiten des Geländes (Reifenspuren, Aushebungen etc.) könnten genutzt werden für Pionierstadien, in denen sich Wasser ansammeln kann. Kleine Gewässerstrukturen dieser Art sind allgemein ein wichtiger Lebensraum für Amphibien und Reptilien und die Inklusion solcher Teilbiotope innerhalb von Freiflächenanlagen kann somit potenziell den ökologischen Wert der Fläche heben. Voraussetzung hierfür ist allerdings, dass diese an Lebensräume dieser Tierarten angeschlossen sind. Sofern die Anlage von naturnahen Biotopen umgeben ist, ist es sinnvoll die Freiflächenanlage mit entsprechenden Trittsteinbiotopen an diese anzuschließen z.B. in Form von Hecken, Gräben oder Wiesen. 4.2 Wie integrieren sich Anlagen gut in die Landschaft? H) Die Gestaltung der Fläche kann dazu beitragen, die Anlage gut in die Landschaft zu integrieren. Eine Einhegung um das Gelände kann den optischen Effekt zusätzlich verringern. Hecken können zusätzlich als Nahrungshabitat oder Nistplatz genutzt werden. Ziel ist es, die Anlage in die vorhandene Struktur einzubinden. Besonders in den siedlungsnahen Bereichen sind bauliche Strukturen bereits vorhanden. 15 5 Netzeinbindung 5.1 Bis zu welchen Netztemperaturen kann Solarthermie eingesetzt werden? A) Bis rund 110 °C ist der Einsatz von „Standard-Technik“ sinnvoll möglich. Entscheidend sind hier die Vor- und Rücklauftemperaturen des Wärmenetzes an der Einbindestelle in der Periode von März bis Oktober. „Standard-Technik“ umschreibt hierbei die marktverfügbare Flachkollektor- und Vakuumröhren-Systemtechnik für große Kollektorfelder, die speziell für die Einbindung in Wärmenetze entwickelt wurde. Bei höheren Netztemperaturen sind konzentrierende Kollektoren wie z.B. Parabolrinnenkollektoren geeignet (siehe FAQ 1.1). 5.2 Warum wirken sich niedrige Vor- und Rücklauftemperaturen günstig aus? S) Die (reale) Wärmeleistung eines Solarthermiekollektors ist umso höher, je höher die solare Einstrahlung und je geringer seine Betriebstemperatur ist. Hierbei wirken mehrere physikalische Effekte zusammen. Leicht nachvollziehbar ist dies, wenn folgender Vergleich betrachtet wird: ist die Netzrücklauftemperatur, die der Solarkollektor erwärmen kann, mit z.B. 40 °C gering, ist dies auch bei geringer solarer Einstrahlung möglich. Muss der Solarkollektor z.B. 90 °C warmes Wasser erwärmen, benötigt er eine wesentlich höhere Leistung und damit hohe solare Einstrahlung. In diesem Fall kann an strahlungsärmeren Tagen kein solarer Wärmeertrag erzielt werden. Bei hohen Temperaturen ist eine höhere Wärmeleistung notwendig, da die Wärmeverluste eines Solarthermiekollektors gegenüber der Umgebung bei hohen Betriebstemperaturen höher sind als bei tieferen. Vakuumröhrenkollektoren zeigen hierbei eine geringere Empfindlichkeit als Flachkollektoren. Kann der Solarkollektor den Netzrücklauf um z.B. 5 K vorwärmen, ist daher ein höherer jährlicher Solarertrag erzielbar als bei einer notwendigen Erwärmung auf Netzvorlauftemperatur. Diese hydraulischen Einbindevarianten können den erzielbaren jährlichen Solarwärmeertrag maßgebend beeinflussen (mehrere 10%). Wie viel mehr Ertrag erhalte ich, wenn ich meine Rücklauftemperatur um 1 Kelvin senke? Dieser Wert kann je nach hydraulischer Einbindung, Regelungskonzept und Kollektorprodukt deutlich variieren. Bei gängigen Anlagenkonzepten kann grob von einem Mehrertrag von 3 bis 5 kWh/a je m² Bruttokollektorfläche ausgegangen werden, wenn die Rücklauftemperatur zum Kollektor um 1 Kelvin abgesenkt wird und die Solarthermieanlage im Vorwärmbetrieb arbeiten kann. 16 5.3 Ist eine stabile Versorgung bei fluktuierender Einstrahlung möglich? S) Eine Solarthermieanlage kann nur dann Wärme erzeugen, wenn die Sonne scheint und die Wärmeerzeugung ist umso höher, je stärker die solare Einstrahlung ist. Durch die Einbindung eines Wärmespeichers kann die solar erzeugte Wärme zwischengespeichert werden und entsprechend den Anfordernissen der Versorgung in das Wärmenetz abgegeben werden. Bei einer dementsprechenden Dimensionierung und Systemeinbindung von Solarkollektorfeld und Wärmespeicher ist eine stabile Versorgung sichergestellt. 5.4 Wie wirkt sich die fluktuierende Leistung auf das Wärmenetz aus? S) Eine Solarthermieanlage kann nur die Leistung weitergeben, die durch die Sonne eingestrahlt wird. Die Wärmekapazität des Kollektorfeldes mindert dabei schon einen Teil der Dynamik. Ist ein Wärmespeicher zwischen dem Kollektorfeld und der Einbindestelle in das Wärmenetz integriert, kann dieser je nach seiner Größe die fluktuierende Leistung schwächen oder sogar glätten. Bei einer direkten Einbindung der Solarthermieanlage in ein Wärmenetz („dezentral“) ist nicht nur die variierende Leistung zu betrachten, sondern auch die ggf. vorhandene Notwendigkeit, die Einspeisetemperatur im engen Rahmen konstant zu halten. Hierzu wurden mehrere Konzepte für eine Einspeisestation entwickelt und in einer Piloteinbindung im Netz der Stadtwerke Düsseldorf untersucht [Forschungsvorhaben SWD.SOL 2018, SWD.SOL2 2022]. Es zeigte sich, dass eine detailliert auf die Einbindesituation angepasste Parametrierung der Regelparameter die Einspeisung der Solarwärme im engen Rahmen der Netzerfordernisse halten kann. Bei einer Einbindung der Solarthermieanlage auf Seite der Wärmeerzeugung („zentral“) können fluktuierende Leistungen und erzeugte Solar-Vorlauftemperaturen meist einfach innerhalb des Erzeugerparks passend für das Wärmenetz ausgeregelt werden. Referenzen: SWD.SOL 2018: SWD.SOL – Dezentrale Einbindung von Wärme aus erneuerbaren Energien in das KWK-Fernwärmesystem der Stadtwerke Düsseldorf AG SWD.SOL2 2022: Evaluierung der dezentralen Einbindung von solarer Wärme in das KWK-Fernwärmesystem der Stadtwerke Düsseldorf AG 17 5.5 Welche Möglichkeiten der Einbindung gibt es bei größeren FW-Netzen? S) Unabhängig von der Größe des Fernwärmenetzes können Solarthermieanlagen auf vielfältige Weise in Wärmenetze eingebunden werden. Folgende Einbindearten werden grundsätzlich unterschieden: » Zentrale Einbindung: Die Solarthermieanlage wird auf der Seite der Wärmeerzeugung in eine Heizzentrale eingebunden. » Dezentrale Einbindung: Die Solarthermieanlage wird in einen Strang des Wärmenetzes eingebunden, entfernt von zentralen Wärmeerzeugern. Die Einbindung kann mit oder ohne Wärmespeicher an der Einbindestelle erfolgen. Weiter wird unterschieden, wie die Solarthermieanlage in den Rücklauf-Vorlauf-Kreislauf eingebunden ist und welche Rolle sie im Zusammenhang mehrerer Wärmerzeuger spielt: » Rücklauf-Vorlauf-Einbindung: die Solarthermieanlage erhält die Rücklauftemperatur des Wärmenetzes und erwärmt diese auf die Vorlauftemperatur. Die Regelung der Solarthermieanlage muss hierbei alle Dynamiken der solaren Einstrahlung und des Massenstroms auf der Wärmenetzseite ausregeln. » Rücklauf-Rücklauf-Einbindung: die Solarthermieanlage erhält die Rücklauftemperatur des Wärmenetzes und erhöht diese um einen Mindestwert, z.B. um mindestens 5 K. Dieser vorgewärmte Rücklauf wird durch einen weiteren Wärmeerzeuger weiter erwärmt oder in einem Wärmespeicher gespeichert und zu einem späteren Zeitpunkt durch die Solarthermieanlage weiter erwärmt. Diese Einbindung führt bei sonst gleichen Randbedingungen zu einem höheren Solarwärmeertrag als die Rücklauf-Vorlauf-Einbindung. » Manche der realisierten Solarthermieanlagen können die Einbindeart je nach Strahlungsangebot (der Sonne) wechseln, wie z.B. die Solarthermieanlage in Senftenberg. 5.6 Mit welchen weiteren Wärmeerzeugern lässt sich Solarthermie kombinieren? A) Solarthermie trägt i.d.R. zur Deckung der sommerlichen Grundlast im Wärmenetz bei bzw. deckt diese bei ausreichender Dimensionierung vollständig. Sie liefert weiter Beiträge zur Grundlast in den Übergangszeiten und an sonnigen Wintertagen. Betriebliche und/oder wirtschaftliche Vorteile ergeben sich insbesondere bei der Kombination mit Wärmeerzeugern, bei denen ein sommerlicher Minderbetrieb Betriebskosten und / oder Emissionen reduziert (Biomasse, Wärmepumpen, BHKW, fossile Heizwerke) bzw. bei denen der sommerliche Teillastbetrieb ineffizient oder nicht möglich ist (Biomasse). Ebenso ist eine 18 Kombination mit anderen Grundlasterzeugern möglich, wenn deren Leistung den sommerlichen Bedarf nur anteilig deckt. Durch große Fernwärmespeicher wird die Solarthermie mit höheren Deckungsanteilen und über längere Zeiträume grund- und mittellastfähig. Der kombinierte Betrieb mit anderen Grundlasterzeugern wird hierdurch flexibilisiert und möglich. Eine Gesamtoptimierung der Wärmeerzeugung erfolgt über die Jahresdauerlinie und mit speziellen Berechnungsprogrammen, welche für die Berechnung der Solarerträge und die Abbildung der Speicherkapazitäten geeignet sind. Ggf. sind netzhydraulische Betrachtungen von Netzabschnitten erforderlich. 6 Auslegung und Ertrag 6.1 Welchen Wärmeertrag und welche Leistung erbringt eine Solarthermieanlage? S) Die Wärmeleistung und der Wärmeertrag einer Solarthermieanlage hängt vom Produkt, der solaren Einstrahlung, der Einbindeart und von den Betriebstemperaturen ab. Letztere haben einen großen Einfluss, da der Wirkungsgrad von Solarthermieanlagen mit steigenden Betriebstemperaturen sinkt. Daher können keine festen, technologiespezifischen Werte für den Wärmeertrag angegeben werden. Es gilt, dass mit zunehmendem solaren Deckungsanteil am jährlichen Gesamtwärmebedarf die Betriebszeiten zunehmen, an denen die Solarthermieanlage hohe Betriebstemperaturen erreicht. Daher sinkt bei sonst gleichen Randbedingungen der jährliche Wärmeertrag je Quadratmeter Kollektorfläche mit zunehmendem solaren Deckungsanteil. Die Abhängigkeit des Wärmeertrages von mehreren Parametern erfordert eine Auslegung der Solarthermieanlage durch Berechnungs- oder Simulationsprogramme. Diese geben den zu erwartenden jährlichen solaren Wärmeertrag, den solaren Deckungsanteil etc. aus. Für Solarthermieanlagen mit jährlichen Deckungsanteilen bis 15 %, durchschnittlicher solarer Einstrahlung und sommerlichen Betriebstemperaturen im Wärmenetz von rund 55 °C Rücklauf und rund 80 °C Vorlauf ergeben sich jährliche, nutzbare Wärmeerträge zwischen rund 430 und 500 kWh je m² Bruttokollektorfläche und Jahr, je nach Kollektorprodukt und Standort. 19 6.2 Welche solaren Deckungsanteile lassen sich erreichen? S) Solarthermieanlagen können durch die Variation der Kollektorfeldgröße und des Wärmespeichervolumens auf eine große Bandbreite von solaren Deckungsanteilen am jährlichen Gesamtwärmebedarf ausgelegt werden. Solaranlagen, die auf Vorwärmung ausgelegt sind, erreichen Deckungsanteile von 3 bis 5%. Bei einer Vergrößerung der Kollektorfläche und der Einbindung eines Pufferspeichers kann die Solarthermieanlage über die Sommermonate die Wärmeerzeugung vollständig übernehmen. Je nach Jahreslastverlauf werden solare Deckungsanteile um die 15% erreicht. Solaranlagen mit saisonalem Wärmespeicher können Deckungsanteile bis nahezu 100% erreichen. Der Investitions- und Installationsaufwand steigt mit zunehmendem solaren Deckungsanteil überproportional an. Die größten bis jetzt in Europa realisierten solaren Deckungsanteile für Anlagen in Wärmenetzen liegen bei 50 bis 70 % des jährlichen Gesamtwärmebedarfs. 6.3 Mit welchem Wärmeertrag je Hektar Landfläche kann man rechnen? S) Wie in FAQ 6.1 und 6.2 beschrieben, hängt der Wärmeertrag einer Solarthermieanlage stark von den Betriebsbedingungen der Anlage ab, insbesondere von den Betriebstemperaturen, der solaren Einstrahlung und dem anvisierten solaren Deckungsanteil. Für Solaranlagen mit jährlichen Deckungsanteilen von 5 bis 15%, durchschnittlicher solarer Einstrahlung und sommerlichen Betriebstemperaturen im Wärmenetz von rund 55 °C Rücklauf und rund 80 °C Vorlauf ergeben sich jährliche, nutzbare Wärmeerträge zwischen rund 2 und 2,5 GWh je Hektar Bodenfläche und Jahr, je nach Kollektorprodukt und Standort. 6.4 Wie funktionieren Verfahren zu Ertragsgarantie? A) Ertragsgarantien werden i.d.R. zwischen dem Anlageneigner und dem Lieferunternehmen im Rahmen der Auftragsvergabe vereinbart. Sie sichern dem Anlageneigner eine vereinbarte Mindest-Leistungsfähigkeit der Solarthermieanlage zu bzw. verpflichten das Lieferunternehmen zu Ersatzzahlungen bei Nichterreichen der vereinbarten Leistungsfähigkeit. In der Praxis finden zwei Verfahren Anwendung. Garantie auf den eingespeisten solaren Nutzwärmeertrag: Das Lieferunternehmen garantiert einen absoluten jährlichen Ertrag, der sich aus den der Anlagenausschreibung zugrundeliegenden Angaben (z.B. Referenzwetterdatensatz und Lastdaten) abzüglich eines Sicherheitsabschlags ergibt. Der reale Ertrag wird dann an vereinbarter Stelle und über einen 20 vereinbarten Zeitraum (z.B. fünf Jahreszeiträume ab Inbetriebnahme) gemessen und dem garantierten Ertrag gegenübergestellt. Dieses Verfahren lässt i.d.R. Schwankungen in der jährlichen solaren Einstrahlung unberücksichtigt. Diese können bei über plusminus 10 % liegen. Garantie nach Leistungskurve: Bei diesem Verfahren basiert die Ertragsgarantie auf einer garantierten Leistungskurve für das gesamte Kollektorfeld einschließlich der Anbindeleitung, interner Verrohrung und Wärmeübertrager. Sowohl die Ertragsgarantie als auch zwei Verfahren zu deren Überprüfung sind in einer internationalen Norm ISO 24194:2022 beschrieben. Die Verfahren basieren entweder auf mehreren Kurzzeitmessungen von je einer Stunde oder mehrere Messungen über je einen Tag. Die aufgeführten Garantiebedingungen gelten ab der Inbetriebnahme der Solarthermieanlage für einen vereinbarten Zeitraum (z.B. ebenfalls fünf Jahre ab Inbetriebnahme). Mit dem Verfahren nach ISO 24194 kann die Garantie einmal jährlich überprüft werden. Hinweis: AGFW FW 316 - Empfehlungen für die Ausschreibung von Freiflächen-Solarthermieanlagen zur Einbindung in Wärmenetze in Kombination mit der Abgabe solarer Ertragsgarantien, AGFW, 2022 7 Wirtschaftlichkeit 7.1 Wie hoch sind die Investitionskosten für Solarthermieanlagen? A) Die Investitionskosten für eine Solarthermieanlage zur Einbindung in ein Wärmenetz umfassen das Kollektorfeld, die Anlagentechnik der Solarthermieanlage, den Wärmespeicher, die Anlagentechnik zur Anbindung an das Wärmenetz, die elektrische Anbindung und MSR-Technik, Planungs- und Baukosten. Die Investitionskosten sind stark von der Anlagengröße und den projektspezifischen Randbedingungen abhängig (z.B. Erforderlichkeit eines Wärmespeichers oder einer Technikzentrale) und sollten durch ein Indikativangebot bei Anbietern angefragt werden. Anhaltswerte für die Gesamtinvestition (Stand 2020) bewegen sich je nach verwendeter Technik und Anlagengröße zwischen 250 und 480 €/m² Bruttokollektorfläche [Thamling 2020] Die Berücksichtigung der Landkosten ist in FAQ 7.4 erläutert. Die spezifischen Investitionskosten sind bei in Wärmenetzen eingebundenen Großanlagen wesentlich geringer als bei Solarthermieanlagen auf Einzelgebäuden. 21 Referenz: Thamling 2020: Thamling et al., Perspektive der Fernwärme, Prognos AG und HIC Hamburg Institut Consulting GmbH, im Auftrag des AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V., 2020] 7.2 Wie hoch sind die Kosten für Betrieb und Instandhaltung einer Solarthermieanlage? A) Die Wartung und Instandhaltung umfassen Sichtprüfungen der Anlage, die Prüfung der Wärmeträgerflüssigkeit (selten), die Pflege des Geländes sowie die Wartung und Instandhaltung der Anlagentechnik der Heizzentrale im gängigen Umfang. Die Wartungs- und Instandhaltungskosten können mit 0,7 % der Gesamtinvestition als jährliche Kosten angesetzt werden. Für die anfallenden Stromkosten kann der Strombedarf der Gesamtanlage mit rund 1 bis 1,5 % der erzeugten Wärmemenge angenommen werden. Die spezifischen Stromkosten sollten entsprechend der unternehmensspezifischen Bezugs- oder Eigenerzeugungskonditionen angesetzt werden. Als weitere jährliche Kosten sind Kosten für Versicherungen und ggf. Landpacht (siehe Link zu FAQ 7.4) sowie der Kapitaldienst für die Investition zu berücksichtigen. Quelle: Praxisleitfaden Solarthermie, März 2021, AGFW 7.3 Welche Wärmegestehungskosten werden erreicht? A) Die Gestehungskosten für die Solarwärme berechnen sich aus den Investitionskosten (siehe FAQ 7.1), den jährlichen Kosten (siehe FAQ 7.2) und dem Jahresertrag (siehe FAQ 6.1) unter der Annahme einer Lebensdauer von 25 Jahren für die Solarthermieanlage und eines unternehmensspezifischen kalkulatorischen Zinssatzes. Es können Wärmegestehungskosten von 55–60 €/MWh vor Förderung erzielt werden (5 % kalkulatorischer Zinssatz, ohne Kosten für die Landfläche, entspr. Berechnungsbeispiel im AGFW-Praxisleitfaden Solarthermie). Die Wärmegestehungskosten sind über die Lebensdauer der Solarthermieanlage weitgehend konstant, da sich ein hoher Anteil von der anfänglichen Investition ableitet. Die Solarthermie bietet somit ein geringes Investitionsrisiko und verringert die Abhängigkeit von Brennstoffkosten und -verfügbarkeiten. Quelle: Praxisleitfaden Solarthermie, März 2021, AGFW 22 7.4 Wie werden die Kosten für die Landfläche berücksichtigt H) Die Kosten für die Pacht oder den Kauf von Flächen können nicht pauschal beurteilt werden, sondern sind stark von den lokalen Bodenpreisen abhängig. Indikatoren für weniger hohe Preise können u.a. geringe Bodenzahlen sein, die auf geringere landwirtschaftliche Erträge der Flächen hinweisen. Auch Bereiche in Wasserschutzgebieten, die Auflagen für die Bewirtschaftung des Bodens wie z.B. den Düngemitteleinsatz enthalten, können sich preislich vorteilhaft auswirken. Da die Flächen zur solarthermischen Nutzung in starker Konkurrenz zur Photovoltaiknutzung stehen, sind die Kosten auch immer davon abhängig wie attraktiv eine Fläche für die Photovoltaiknutzung ist. Sind PV-Flächen nach EEG förderfähig wie z.B. entlang von Autobahnen oder Schienenwegen können meist höhere Pachtpreise gezahlt werden, da die Vergütung des erzeugten Stroms gesichert ist. Auf diesen Flächen können die Pachtpreise auf Grund der besonderen wirtschaftlichen Eignung höher ausfallen als in Bereichen, die nicht nach EEG förderfähig sind. Wenn der Pachtpreis für den/die Besitzer*in das alleinige Entscheidungskriterium ist, muss der Pachtpreis für die solarthermische Nutzung entsprechend höher ausfallen als bei einer geförderten Photovoltaiknutzung. 7.5 Welche Fördermöglichkeiten für Solarthermieanlagen gibt es? A) Es gibt auf Bundes- und Landesebene eine Vielzahl von Förderprogrammen, die zum Bau von Solarthermieanlagen in Verbindung mit Wärmenetzen in Anspruch genommen werden können. Einige dieser Förderprogramme zielen direkt auf die Nutzung und Anwendung solarthermischer Anlagen im Bereich der Fernwärme (z.B. Bundesförderprogramm für effiziente Wärmenetze, BEW). Andere Förderprogramme zielen auf Wärmesysteme ab, bei denen die Solarthermieanlage als ein Bestandteil einer systemischen Förderung bezuschusst werden kann. Dies betrifft vor allem die Förderung über das Kraft-Wärme-Kopplungsgesetz (KWKG). Die Programme und ihre jeweiligen Konditionen unterliegen fortlaufenden Änderungen und sind über einschlägige Förderportale gelistet. Genannt sind hier mit dem jeweiligen Verweis: » Bundesförderung Effiziente Wärmenetze (BEW): Internetseite des BAFA » Bonus für innovative erneuerbare Wärme sowie Ausschreibungen der innovativen Kraft-Wärme-Kopplung (KWKG 2020, KWKAusV). 23 8 Projektentwicklung 8.1 Welche Phasen sind bei der Projektentwicklung zu berücksichtigen? H) Die Projektentwicklung solarthermischer Freiflächenanlagen gliedert sich i.d.R. in folgende Phasen: Flächenanalyse und Flächenakquise (ca. 4-8 Monate) Genehmigungsphase (ca. 15-24 Monate) a. Planungsanstoß durch z.B. Vorhabensträger b. Frühzeitige Behördenbeteiligung c. Aufstellungsbeschluss (förmliche Einleitung des Verfahrens) d. Frühzeitige Öffentlichkeitsbeteiligung (Beteiligung auf Basis eines Vorentwurfs) e. Abstimmung mit Behörden und Trägern öffentlicher Belange f. Öffentliche Auslegung des Planentwurfs (ein Monat) g. Feststellung des Bebauungsplans h. Bauantrag und Erteilung Baugenehmigung Bau und Inbetriebnahme (ca. 5-6 Monate) 8.2 Welche Genehmigungen und Gutachten sind einzuholen? H) Je nach örtlicher Situation können folgende Gutachten gefordert werden: » Blendgutachten (i.d.R. wenn Projekt in Straßennähe) » Statikgutachten / Baugrundgutachten » Versickerungsgutachten » Umweltverträglichkeit bzw. Umweltuntersuchungen unterschiedlicher Fachrichtungen (z.B. Prüfung der Verwendung von Glykol) » Faunistische Betrachtung und Biotopkartierung (Erfassung im Planungsgebiet, Auswertung der Ermittlungsergebnisse, Beratung Ausgleichsmaßnahme oder ökologische Aufwertung) » Weitere Gutachten im Einzelfall je nach lokalen Anforderungen im Plangebiet 8.3 Welche lokalen Akteure sind einzubinden? H) Als wichtige lokale Akteur*innen neben den Behörden sind im Allgemeinen einzubinden: 24 » Im Rahmen der Initiation / Projektidee: Akteure innerhalb der Kommunalverwaltung und Kommunalpolitik (Umwelt-, Klimaschutz-, Stadtplanungs- und Bauamt, Beschaffungs- und Wirtschaftsdezernat, (Ober-)Bürgermeister*in, Kämmerer/Kämmerin, Gemeinderats-mitglieder und -fraktionen etc.) » (lokale) Naturschutzverbände im Rahmen der frühzeitigen informellen Flächenanalyse » Landwirtschaftsverbände im Rahmen der Flächenakquise » Lokale Klimagruppen im Rahmen der öffentlichen Diskussion und Notwendigkeit von EE-Flächen in der Kommune » Stadtwerke, kommunale Eigenbetriebe oder lokale / regionale Bürgerenergiegenos-senschaften als Errichter und / oder Betreiber der Anlage » Lokale Wärmenetzbetriebe wenn Betriebskonzepte diskutiert werden » Energieagenturen, um Erfahrungen aus dem Land oder dem Landkreis / der Region zu nutzen » Ankerkunden (Wärmesenken) » (kommunale) Wohnungsbaugesellschaften, Gebäudeeigentümer*innen, Industrie- und Gewerbebetriebe / -gebiete » Im Rahmen der Projektumsetzung: weitere lokale Akteure wie z. B. Handwerksbetriebe, Banken, Hochschulen, Institute, Umweltvereine, Klima-Initiativen etc. 8.4 Was können Kommunen vorbereitend tun? D) Die Durchführung einer frühzeitigen Flächenanalyse vor der konkreten Projektplanung, z.B. im Zuge der Erstellung eines kommunalen Wärmeplans, unterstützt und beschleunigt den Entscheidungsprozess. Folgenden Schritte können vorbereitend erfolgen: » Betrachtung des Flächennutzungsplans sowie der planerischen Vorgaben auf Landes- und Regionalebene, mit dem Ziel auf Basis dieser Bestandsaufnahme eine Priorisierung potenzieller Flächen für erneuerbare Energiegewinnung vorzunehmen (siehe FAQ 3.8). » Prüfung auf für die Wärmeplanung und insbesondere für die Solarthermie relevante Aspekte bereits erstellter Karten und Darstellungen, z.B. für die Stadtplanung oder für Klimaschutzkonzepte » Je nach Kommunentyp und -größe bietet es sich an, frühzeitig Kontakt zu benachbarten Kommunen aufzunehmen, um eine interkommunale Flächenanalyse zu initiieren, die entsprechende Vorteile bieten kann (Erfassung von Randbereichen, Reduzierung des Aufwands und damit auch der Kosten für die einzelnen Kommunen, mehr Flächen zur Abwägung stehen zur Verfügung). » Erstellung von Klimaschutzkonzepten (Angaben zu Klimaschutzzielen, technisch und wirtschaftlich umsetzbare Einsparpotenziale, konkrete Handlungsfelder, wie bspw. Wärme- und Kältenutzung, und Maßnahmen) » Einleitung und Durchführung einer kommunalen Wärmeplanung, u.a. zur Ermittlung der technischen Potenziale einzubindender erneuerbarer Energiequellen wie bspw. Solarthermie unter Berücksichtigung von Ausschlusskriterien (siehe FAQ 3.8)

Asma Sohail2023-08-21T09:33:59+02:00Montag, 21. August, 2023|

Klimahacks No. 7

Klimahacks No. 7 Mach dein Projekt zu solaren Wärmenetzen In Ausgabe No. 7 der #Klimahacks-Reihe rückt das Potenzial solarer Wärmenetze in den Mittelpunkt. Mit einem Anteil von etwa 50 Prozent am Endenergieverbrauch ist die Wärmeenergie eine wichtige Stellschraube bei der Erreichung der nationalen Klimaschutzziele. Da vor allem in den Städten und Gemeinden ein Großteil der Wärmeenergie verbraucht wird, rücken zentrale Wärmenetze aus erneuerbaren Wärmequellen, wie etwa Solarthermie-Anlagen, immer stärker in den kommunalen Fokus. Genau hier setzt die neue Ausgabe an und zeigt anhand aktueller Grafiken, Studien, Veröffentlichungen und einer Schritt-für-Schritt-Anleitung, wie der Weg zum solaren Wärmenetz auf kommunaler Ebene gelingen kann. Zielgruppe dieser Publikation sind sowohl Klimaschutz-Einsteigerkommunen als auch neue und altgediente Klimaschutzmanagerinnen und -manager, die sich inspirieren lassen möchten.

Julian Kuntze2023-06-22T11:15:23+02:00Freitag, 1. Januar, 2021|

Wärmenetze mit erneuerbaren Energien – klimaneutral und zukunftsfähig

WÄRMENETZE MIT ERNEUERBAREN ENERGIEN Klimaneutral und zukunftsfähig Solarthermie Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Gefördert durch: Gute Gründe für ein Wärmenetz mit erneuerbaren Energien in Ihrer Kommune Projektpartner: Regionale Wertschöpfung durch Wärmenetze Schon in kleinen Ortschaften summiert sich der jährliche Mittelabuss für fossile Energieträger auf mehrere Hunderttausend Euro. Diese Mittel können in der Region verbleiben! Sie können zum Beispiel den lokalen Land- und Forstwirtschaftsbetrieben zugutekommen oder bei Bau und Betrieb der Versorgung Arbeitsplätze schaen. Die Nutzung regionaler erneuerbarer Energiequellen ermöglicht die Verknüpfung von ökologischer mit ökonomischer Nachhaltigkeit und trägt zur regionalen Wohlstandssicherung bei. SolnetBW Für die Zukunft gut aufgestellt Wärmenetze mit erneuerbaren Energien sind gleich dreifach zukunftssicher: Der Wärmepreis ist stabil, da unabhängig von der kommenden CO-Bepreisung und künftigen Weltmarktentwicklungen. Auch gegen strengere gesetzlichen Anforderungen bei der Gebäudebeheizung sind Anschlussnehmer von Wärmenetzen gefeit. Und schlussendlich kann die Umstellung auf neue und innovative Technologien zentral erfolgen, wodurch Anpassungen schnell und einfach durchgeführt werden können. Für unser Gemeinwohl auf der richtigen Seite Ob im eigenen Haushalt oder der gesamten Kommune, die Wärme ist in der Regel für über die Hälfte des Energieverbrauchs verantwortlich. Ein Anschluss an ein Wärmenetz mit erneuerbaren Energien kann daher einen eektiven, schnellen und nachhaltigen Beitrag zum kommunalen Klimaschutz leisten. Durch die gemeinsame Sache vor Ort steuern wir den Importen fossiler Energien und den Verteilungskonikten in deren Herkunftsländern entgegen. Nahwärme ist bequem und günstig Die Wärme für das Eigenheim kann bequem und einfach über das Wärmenetz bezogen werden, wie dies schon überall bei Wasser und Strom üblich ist. Es entfallen lästige Wartungs- und Instandhaltungsarbeiten am eigenen Heizkessel im Keller. Neben den eingesparten Kosten wird zudem weiterer Platz im Keller frei. Der Anschluss an das Wärmenetz benötigt im Haus nur eine kompakte Wärmeübergabestation. Übrigens werden heute Glasfaserkabel für schnelles Internet meist mit verlegt. Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Wärmenetze mit erneuerbaren Energien sind eine Lösung für die nachhaltige Wärmeversorgung in ihrer Kommune oder Stadt! Projektpartner: Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Biomasse Abwärme Geothermie Jetzt gemeinsam anpacken! Gefördert durch: SolnetBW WÄRMENETZE MIT ERNEUERBAREN ENERGIEN Klimaneutral und zukunftsfähig Solarthermie Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Gefördert durch: Gute Gründe für ein Wärmenetz mit erneuerbaren Energien in Ihrer Kommune Projektpartner: Regionale Wertschöpfung durch Wärmenetze Schon in kleinen Ortschaften summiert sich der jährliche Mittelabuss für fossile Energieträger auf mehrere Hunderttausend Euro. Diese Mittel können in der Region verbleiben! Sie können zum Beispiel den lokalen Land- und Forstwirtschaftsbetrieben zugutekommen oder bei Bau und Betrieb der Versorgung Arbeitsplätze schaen. Die Nutzung regionaler erneuerbarer Energiequellen ermöglicht die Verknüpfung von ökologischer mit ökonomischer Nachhaltigkeit und trägt zur regionalen Wohlstandssicherung bei. SolnetBW Für die Zukunft gut aufgestellt Wärmenetze mit erneuerbaren Energien sind gleich dreifach zukunftssicher: Der Wärmepreis ist stabil, da unabhängig von der kommenden CO-Bepreisung und künftigen Weltmarktentwicklungen. Auch gegen strengere gesetzlichen Anforderungen bei der Gebäudebeheizung sind Anschlussnehmer von Wärmenetzen gefeit. Und schlussendlich kann die Umstellung auf neue und innovative Technologien zentral erfolgen, wodurch Anpassungen schnell und einfach durchgeführt werden können. Für unser Gemeinwohl auf der richtigen Seite Ob im eigenen Haushalt oder der gesamten Kommune, die Wärme ist in der Regel für über die Hälfte des Energieverbrauchs verantwortlich. Ein Anschluss an ein Wärmenetz mit erneuerbaren Energien kann daher einen eektiven, schnellen und nachhaltigen Beitrag zum kommunalen Klimaschutz leisten. Durch die gemeinsame Sache vor Ort steuern wir den Importen fossiler Energien und den Verteilungskonikten in deren Herkunftsländern entgegen. Nahwärme ist bequem und günstig Die Wärme für das Eigenheim kann bequem und einfach über das Wärmenetz bezogen werden, wie dies schon überall bei Wasser und Strom üblich ist. Es entfallen lästige Wartungs- und Instandhaltungsarbeiten am eigenen Heizkessel im Keller. Neben den eingesparten Kosten wird zudem weiterer Platz im Keller frei. Der Anschluss an das Wärmenetz benötigt im Haus nur eine kompakte Wärmeübergabestation. Übrigens werden heute Glasfaserkabel für schnelles Internet meist mit verlegt. Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen.

Julian Kuntze2023-03-22T11:50:52+01:00Mittwoch, 1. Januar, 2020|

Solare Wärmenetze – Marktstatus 2018 für Deutschland und Europa

nfoblatt Solare Wärmenetze | Nr. 2 www.solare-waermenetze.de Wärmenetze mit erneuerbaren Energien bieten vielversprechende Möglichkeiten, bei der Wärmewende vor Ort voranzukommen. Immer öfter werden dabei auch große Solarthermie- Freiflächenanlagen eingebunden. Die Technologie ist ausgereift und für Versorger auch wirtschaftlich attraktiv. In Deutschland sind derzeit 34 solarthermische Großanlagen mit einer Nennleistung von insgesamt 44 MWth bzw. einer Kollektorfläche von 62.700 m² in Wärmenetze eingebunden. Weitere 19 MWth bzw. 23.200 m² sind konkret in Realisierung und Planung. Auf Basis von weiteren Projektaktivitäten und der derzeit guten Fördersituation kann von einer Verdreifachung der installierten Anlagenleistung in den nächsten Jahren ausgegangen werden. Einen wesentlichen Anteil der in Betrieb befindlichen Anlagen bilden weiterhin die elf Großanlagen, die zwischen 1995 und 2012, meist im Rahmen der F&E-Programme Solarthermie-2000 und Solarthermie2000plus, als Pilotprojekte zur solaren Nahwärmeversorgung realisiert wurden. Eine Kehrtwende hin zu einer rein marktwirtschaftlichen Umsetzung ist seit dem Jahr 2013 Die Nutzung solarthermischer Großanlagen für Nah- und Fernwärmeversorgungen legt in Deutschland und einigen Nachbarländern deutlich zu. Zur Erreichung der Ausbauziele ist jedoch eine Steigerung um den Faktor 50 nötig. Solare Wärmenetze Marktstatus 2018 für Deutschland und Europa Crailsheim 7410 m² Neckarsulm 5670 m² Friedrichshafen 4050 m² Hamburg-Bramfeld 1400 m² München-Ackermannbogen 2900 m² Augsburg 2000 m² Stuttgart-Burgholzhof 1630 m² Eggenstein 1600 m² Steinfurt-Borghorst 510 m² Hannover-Kronsberg 1350 m² Energiebunker-Wilhelmsburg 1348 m² Festo Esslingen 1330 m² Büsingen 1090 m² Stuttgart-Brenzstraße 1000 m² Rostock-Brinkmanshöhe 1000 m² Jena-Pößneck 99 m² Hamburg-Harburg 477 m² Hennigsdorf-Cohn'sches Viertel 856 m² Chemnitz 2230 m² Senftenberg 8300 m² Neuerkirch-Külz 1422 m² Hallerndorf 1304 m² Düsseldorf 240 m² Berlin-Adlershof 618 m² Berlin-Köpenick 1058 m² Randegg 2400 m² Breklum 652 m² Ellern 1245 m² Gutleutmatten (in Betrieb) 1474 m² Mengsberg 2950 m² Radolfzell-Liggeringen 1068 m² Moosach 1067 m² Brannenburg 494 m² Schauffling 477 m² Gutleutmatten (im Bau) 526 m² Schluchsee 3000 m² Erfurt 1690 m² Potsdam 5000 m² Gimbweiler 1200 m² Ettenheim 1750 m² Ludwigsburg 14000 m² in Betrieb 34 Anlagen mit ca. 62719 m² in Realisierung/Planung 7 Anlagen mit ca. 27166 m² in Vorbereitung 29 Anlagen mit ca. 111917 m² Quelle: Solites Stand: Mai 2019 zu erkennen: Bei nun regelmäßig neu hinzu kommenden Anlagen treffen die Wärmeversorger ihre Investitionsentscheidungen aufgrund gegebener Wirtschaftlichkeit und ökologischer Vorteile der Solarthermie. Ein bemerkenswerter Anteil des Marktzuwachses entfiel in den letzten Jahren auf sogenannte Energiedörfer in ländlichen Regionen, bei denen in der Regel Freiland-Solarthermieanlagen zwischen 1.000 und 3.000 m² Kollektorfläche mit Biomasseheizwerken kombiniert werden. Insgesamt sind in Deutschland neun solcher Wärmeversorgungen in Betrieb. Sie stellen rund ein Fünftel der installierten Leistung dar. Allein im Jahr 2018 wurden fünf dieser neun Anlagen realisiert. Im Sektor der städtischen Fernwärme stellt die im brandenburgischen Senftenberg errichtete Anlage einen wichtigen Meilenstein dar: Aus rein wirtschaftlichen Gründen nahmen die Stadtwerke Senftenberg im August 2016 Deutschlands größte Solarthermieanlage mit einer Kollektorfläche von 8.300 m² in Betrieb, die in ein Fernwärmenetz mit rund 100 GWh Jahreswärmeumsatz einspeist. Weitere wichtige Solarthermieanlagen wurden in die städtischen Wärmenetze von Hamburg, Jena, Chemnitz, Düsseldorf und Berlin eingebunden. Mit dem Projekt „SolarHeatGrid“ der Stadtwerke Ludwigsburg ist mit rund 14.000 m2 Kollektorfläche ein neuer nationaler Solarthermie- Rekordhalter im Bau. Eine Prognose der Marktentwicklung für den Fünfjahreszeitraum bis 2023 ergibt rund eine Verdopplung der Anlagenzahl auf dann 70 Anlagen und einen Zubau von rund 95 MWth Anlagenleistung bzw. 135.000 m² Kollektorfläche. Diese Prognose ergibt sich aus einer Abschätzung basierend auf konkreten Realisierungen, Ausschreibungen, Planungen und Machbarkeitsuntersuchungen von Projekten mit großer Solarthermie. Die unterschiedliche Realisierungswahrscheinlichkeit der Vorhaben wurde dabei berücksichtigt. Die Einbindung von großen Kollektorflächen über 10.000 m² in städtische Fernwärmenetze stellt mit einem Anteil von rund 75 % den vorwiegenden Anwendungsfall dar. Diese positive Entwicklung soll nicht darüber hinwegtäuschen, dass weitere erheblich Anstrengungen zur Verbreitung und Markteinführung solarer Wärmenetze erforderlich sind: Gemessen an der „Energieeffizienzstrategie Gebäude“ des BMWi, die zur Zielerreichung ab sofort einen jährlichen Zubau von ca. 1 Mio. m² Kollektorfläche erfordert (siehe Kasten auf dieser Seite), bedarf es einer Erhöhung der derzeitigen Ausbauzahlen für solare Wärmenetze um rund einen Faktor 50! Infoblatt Solare Wärmenetze | Nr. 2 ENERGIEEFFIZIENZSTRATEGIE GEBÄUDE – AUSBAUPFAD FÜR SOLARE WÄRMENETZE In ihrem Zielszenario „Erneuerbare Energien“ geht die Energieeffizienzstrategie Gebäude des Bundesministeriums für Wirtschaft und Energie (BMWi) bis zum Jahr 2050 von einem weitgehend gleichbleibenden Beitrag der Fernwärme von rund 80 TWh/a zur Wärmebereitstellung in Deutschland aus. Gleichzeitig soll der Beitrag der Solarthermie von rund 3 TWh/a im Jahr 2008 auf ebenfalls 80 TWh/a ansteigen. Geht man mittelfristig von einem Anteil der Solarthermie an der Fernwärmeerzeugung von 15 % aus, so ergibt sich ein Beitrag der Solarthermie in diesem Bereich von 12 TWh/a. Hierfür ist bis zum Jahr 2050 eine Kollektorfläche von 30 Mio. m² bzw. eine Leistung von 21 GW zu realisieren, woraus ein erforderlicher jährlicher Neuzubau von rund 1 Mio. m² bzw. 0,7 GW pro Jahr resultiert. Hierfür bedarf es bundesweit in der Summe einer Landfläche von lediglich 60 km², entsprechend einer Fläche von rund 8 mal 8 km. 12 TWh Solarthermie in Wärmenetzen entspr. 21 GW bzw. 30 Mio. m² Solarthermie ca. 80 TWh Wärmenetze ca. 80 TWh Endenergieverbrauch 2050 Zielszenario „Erneuerbare Energien“ Quelle: BMWi 2015 [1] 623 TWh 0 10 20 30 40 50 60 70 80 90 100 0 50.000 100.000 150.000 200.000 250.000 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023+ Anzahl Anlagen Bruttokollektorfläche [m²] In Vorbereitung Industrie Energiedorf städtische Fernwärme Quartier Anzahl Anlagen MARKTENTWICKLUNG IN EUROPA Bis heute wurden europaweit 325 solarthermische Großanlagen mit einer Nennleistung über 350 kWth und davon 167 Anlagen mit einer Nennleistung über 1 MWth realisiert. Die insgesamt europaweit installierte Leistung an solarthermischen Großanlagen liegt derzeit bei 1.196 MWth. Der mittlere jährliche Zuwachs betrug in den letzten 5 Jahren ca. 21 % bezogen auf die gesamte installierte Leistung [3]. Dänemark, wo in den letzten 15 Jahren über 80 % der oben genannten Leistung installiert wurde, bleibt mit großem Abstand Spitzenreiter bei der Nutzung von Solarthermie in der Wärmeversorgung. Die aktuell größte Anlage befindet sich im dänischen Silkeborg mit einer Kollektorfläche von 157.000 m² und somit eine Leistung von rund 100 MWth. Neben Deutschland sind in Österreich mit 37 MWth und Schweden mit 24 MWth relevante Anlagenleistungen in Wärmenetze eingebunden. Bei einem in Entwicklung befindlichen Solarthermie-Großprojekt „Big Solar Graz“ für die Fernwärme der österreichischen Stadt Graz wird bereits in konkreter Weise die Realisierung eines Kollektorfelds mit über 150 MWth Leistung und mehreren Wärmespeichern in Betracht gezogen. Desweiteren entwickeln sich neue Märkte in Frankreich, Italien und Polen, wo erste Anlagen im Megawatt-Bereich realisiert wurden. www.solare-waermenetze.de STÄDTISCHE FERNWÄRME Große Fernwärmesysteme in Stadtgebieten werden heute meist mit Wärme aus großen Heizkraftwerken, Heizwerken oder industrieller Abwärme betrieben. Als Brennstoffe finden oft Erdgas, Kohle, Abfall oder Biomasse Verwendung. Die Dekarbonisierung der Wärmeerzeugung städtischer Fernwärme stellt einerseits eine große Herausforderung dar, andererseits ist sie aber auch ein effizienter und kostengünstiger Ansatz für eine schnelle Wärmewende in urbanen Gebieten. Die Einbindung großflächiger Solaranlagen ist eine Möglichkeit, den Anteil erneuerbarer Energiequellen in solchen Systemen zu erhöhen. Die deutliche Zunahme der Solarthermieprojekte in diesem Bereich und deren Größe von meist über 10.000 m² zeigen, dass auch in urbanen Räumen die Findung geeigneter Flächen möglich ist. ENERGIEDÖRFER Derzeit entstehen vielerorts neue Nahwärmenetze in Energiedörfern in ländlichen Gegenden. Im Vordergrund steht hier der Wechsel von meist dezentralen Ölheizungen zu einem auf erneuerbaren Energien basierenden Nahwärmenetz für einen Großteil der örtlichen Gebäude (siehe auch [2]). Die Kombination von großen Freiflächen-Solarthermieanlagen mit Biomasseheizwerken entwickelt sich als Erfolgsmodell in diesem Bereich. Vielfältig sind die Möglichkeiten, den Betrieb von Wärmenetzen in Energiedörfern zu organisieren. In einigen Fällen haben sich dafür lokale Bürgerenergiegenossenschaften gebildet, in anderen Fällen fungieren kommunale Eigenbetriebe, Stadtwerke oder Regionalversorger als Betreiber. Inzwischen bieten sich auch professionelle Ökoenergieunternehmen an, die ursprünglich im Strombereich entstanden sind. QUARTIERE UND WOHNUNGSWIRTSCHAFT Der größte Teil der Fernwärme in Deutschland dient zur Versorgung von Mehrfamilienhäusern in den Städten. Der Strukturwandel in der städtischen Fernwärme zu erneuerbaren Energien trägt so auch dazu bei, das Ziel eines klimaneutralen Gebäudebestands zu erreichen. Neben den innerstädtischen Fernwärmesystemen werden viele Wohngebäudequartiere über eigene Wärmenetze versorgt, die von Energieversorgern, Contracting-Unternehmen oder der Wohnungswirtschaft selbst betrieben werden. Auch in diesen Fällen bietet sich die großflächige Solarthermie an, den Wandel von fossilen zu erneuerbaren Wärmequellen voran zu bringen. Der Blick auf das Quartier ermöglicht dabei in vielen Fällen kostengünstigere und effizientere Lösungen als Maßnahmen bei Einzelgebäuden. ENERGIEDORF QUARTIER STADT Anlagen > 1 MWth europaweit in Betrieb Anzahl 167 Kapazität [MWth] 1.096 Kollektorfläche1 [m²] 1.579.629 Anlagen > 350 kWth europaweit in Betrieb Anzahl 325 Kapazität [MWth] 1.196 Kollektorfläche [m²] 1.707.803 Hiervon mit erster Inbetriebnahme 20182 Anzahl 22 Kapazität [MWth] 62,5 Kollektorfläche [m²] 89.238 Mittlerer jährlicher Zubau der vergangenen 5 Jahre [% pro Jahr] 21 Energieproduktion2, 3 [GWh/a] 700 [TJ/a] 2.521 Vermiedene CO2-Emissionen2 [tCO2/a] 1.242.714 1 Aperturfläche 2 Bezug: Anlagen > 350 kWth 3 410 kWh/m² MARKTDATEN FÜR EUROPA ENTWICKLUNG IN DEN SEKTOREN Gefördert durch: www.solare-waermenetze.de IMPRESSUM Das Infoblatt Solare Wärmenetze ist eine Initiative im Rahmen von Solnet 4.0, einem vom Bundesministerium für Wirtschaft und Energie geförderten Vorhaben zur Marktbereitung für solare Wärmenetze. Die Projektpartner sind das Steinbeis Forschungsinstitut Solites, der Fernwärmeverband AGFW, das Hamburg Institut sowie die Herausgeber der Zeitschrift Energiekommune. Herausgeber: Steinbeis Innovation gGmbH vertreten durch Steinbeis Forschungsinstitut Solites (www.solites.de) Redaktion: Thomas Pauschinger, Patrick Geiger, Carlo Winterscheid (Solites) Dr. Heiko Huther, AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V. (www.agfw.de) Dr. Matthias Sandrock, HIR Hamburg Institut Research gGmbH (www.hamburg-institut.com) Foto: Eins Energie in Sachsen GmbH &Co. KG Veröffentlichung: Mai 2019 Haftungsausschluss: Das dieser Publikation zugrundeliegende Vorhaben wird mit Mitteln des Bundesministeriums für Wirtschaft und Energie unter dem Förderkennzeichen 03EGB0002A gefördert. Die Verantwortung für den Inhalt dieses Dokuments liegt bei den AutorInnen. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Energiekommune Förderprogramm Art der Förderung Regelförderung durch das Marktanreizprogramm (MAP) des BMWi bzw. das KfW-Programm 271/281 „Erneuerbare Energien Premium“ Große Solarwärmeanlagen, die ihre Wärme einem Wärmenetz zuführen, werden über ein Darlehen mit einem Tilgungszuschuss von bis zu 40 % der Investitionskosten oder entsprechend einer ertragsabhängigen Quote gefördert. Förderfähig sind weiter Wärmespeicher mit einem Speichervolumen über 10 m³, Nahwärmenetze im Bestand, die mit Wärme aus erneuerbaren Energien gespeist werden, und Hausübergabestationen. Förderprogramm „Modellvorhaben Wärmenetzsysteme 4.0“ des BMWi Systemische Förderung von Wärmenetz-Gesamtsystemen mit hohen Anteilen erneuerbarer Energien, effizienter Nutzung von Abwärme und niedrigem Temperaturniveau. Zweistufige Förderung durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) von bis zu 60 % der Kosten einer Machbarkeitsstudie (Fördermodul I) und bis zu 50 % der Investitionskosten (Fördermodul II). Ausschreibungen der Bundesnetzagentur für „innovative KWK-Systeme“ Halbjährliche Ausschreibungen für innovative KWK-Systeme von 50 MW pro Jahr im Zeitraum 2018 – 2021 entsprechen KWKAusV. KWK-Anlagen mit 1-10 MWel in Kombination mit der Einspeisung von 30 % innovativer erneuerbarer Wärme (Solarthermie, Geothermie, Power-to-Heat) durch das innovative KWK-System. PROGRAMME ZUR FINANZIELLEN FÖRDERUNG Infoblatt Solare Wärmenetze | Nr. 2 UNTERSTÜTZUNG RUND UM WÄRMENETZE REFERENZEN Weitere teils kumulierbare Förderprogramme bestehen auf Landesebene. [1] Energieeffizienzstrategie Gebäude, Bundesministerium für Wirtschaft und Energie (BMWi), November 2015 [2] Infoblatt Solare Wärmenetze Nr. 1, Solarwärme heizt Energiedörfer am Bodensee, www.solare-waermenetze.de [3] Datenbank von Jan-Olof Dalenbäck, CIT Management AB, Februar 2018, Aktualisierung mit eigenen Daten und Daten von AEE Intec, Gleisdorf (AT)

Julian Kuntze2023-03-22T11:50:52+01:00Mittwoch, 1. Mai, 2019|
Nach oben