Infoblatt Solare Wärmenetze Nr.21 Fragen&Antworten aus der „Online-Sprechstunde Solare Wärmenetze“

www.solare-wärmenetze.de Infoblatt Nr. 21 Im Rahmen des Projekts SolnetPlus fanden fünf „Online-Sprechstunden Solarthermie“ statt. Expert*innen aus dem Projektkreis beantworteten gezielt die Fragen kommunaler Akteur*innen – von der Integration in Wärmenetze bis zur Wirtschaftlichkeit, von ökologischen Aspekten bis zu technischen Herausforderungen. Wie können Kommunen und Stadtwerke die Integration von fluktuierendem Wärmeertrag aus Solarthermie in ihre Fernwärmenetze meistern? Der Wärmeertrag hängt stark von der Sonneneinstrahlung ab und unterliegt somit Schwankungen, beispielsweise durch vorüberziehende Wolken. Für die direkte Einspeisung in ein Wärmenetz ist dies gegenüber dem Betrieb durch fossile, konstante Grundlasterzeuger eine Neuerung, jedoch kein Problem. Voraussetzung: Die Solarthermieanlage ist technisch gut ausgelegt. Die heute im Markt aktiven Solarthermie- Anbietern verfügen über langjährige Erfahrung damit. In Deutschland gibt es bereits knapp 60 große Solarthermieanlagen, die erfolgreich in Wärmenetzen einspeisen und zeigen, dass diese Technologie zuverlässig und effektiv eingesetzt werden kann. Dennoch existieren grundlegende Unterschiede zwischen konventionellen und erneuerbaren Energiesystemen. Im Gegensatz zu Gaskesseln oder Ölkesseln können Betreiber die Leistung von erneuerbaren Energiesystemen nicht beliebig variieren. Dies erfordert eine neue Denkweise in der Betriebsführung. Größere Pufferspeicher bis hin zu großen Multifunktionswärmespeichern werden künftig eine entscheidende Rolle spielen, da sie stets eine konstante Wärmequelle bereitstellen können. Welche anderen erneuerbaren Wärmeerzeuger sind sinnvoll mit Solarthermie zu kombinieren? Grundsätzlich sind alle erneuerbaren Wärmequellen - wie Solarthermie - in Wärmenetze einbindbar. Für eine erfolgreiche Wärmewende müssen für die jeweilige Kommune alle lokal vorhandenen Wärmequellen in Betracht gezogen werden. Ein aktuelles Beispiel für eine innovative Wärmeversorgung findet sich im süddeutschen Hechingen, wo derzeit eine Neubausiedlung entsteht. Im Rahmen einer Bürgerbeteiligung wünschten die BürgerInnen sich ein Für Kommunen gewinnt die Integration erneuerbarer Energien in Wärmenetze zunehmend an Bedeutung. Zur Nutzung des Potenzials der großflächigen Solarthermie bestehen noch offene Fragen auf kommunaler Ebene. Von lokalen Rahmenbedingungen bis hin zu wirtschaftlichen und technischen Aspekten - dieses Infoblatt fasst zentrale Fragen und Antworten zusammen. SOLARTHERMIE IN WÄRMENETZEN Zentrale Fragen & Antworten aus der „Online-Sprechstunde“ Grafik: Difu/brandtwerk Wie gehen Stadtwerke mit dem fluktuierenden Wärmeertrag einer Solarthermieanlage um? Die Anlage in Bernburg (Saale) ist seit dem Jahr 2020 in Betrieb. Für eine detaillierte technische Reportage als Infoblatt (PDF) den QR-Code scannen oder zu finden unter: https://www.solare-waermenetze.de/mediathek/ wissensdatenbank-solare-waermenetze/ ERFAHRUNGSBERICHT: SOLARTHERMIE IM WÄRMENETZ Infoblatt Nr. 21 CO2-neutrales Wärmenetz. Eine Machbarkeitsstudie erarbeitete eine innovative Lösung, deren Umsetzung durch den Gemeinderat beschlossen wurde. Das Konzept fußt auf einer Kombination aus Erdwärmesonden und Solarthermie. Die geologische Besonderheit der Region, nahe des Hohenzollerngrabens, bietet optimale Voraussetzungen für die Nutzung von Erdwärme. Eine 7.000 Quadratmeter große Solarthermieanlage wird zukünftig rund zwei Drittel des jährlichen Wärmebedarfs abdecken, während ein großer Erdbeckenwärmespeicher die saisonalen Schwankungen ausgleicht und die Solarwärme in die Heizperiode speichert. Ergänzt wird das System durch 40 Erdwärmesonden und eine Wärmepumpe sowie eine zweite Wärmepumpe, die den saisonalen Wärmespeicher entlädt. So wird eine fossilfreie Wärmeerzeugung von insgesamt 95 Prozent ermöglicht. Lediglich 5 Prozent der Wärmebedarfs werden durch einen Biomethan befeuerten Gaskessel gedeckt, um eine zuverlässige Versorgung auch in Spitzenlastzeiten zu gewährleisten. Diese innovative Kombination aus erneuerbaren Energiequellen und effizienter Wärmebereitstellung zeigt, wie lokal angepasste Lösungen einen wichtigen Beitrag zur Energiewende leisten können. In Regionen mit reichlich verfügbaren Holzhackschnitzeln können diese als attraktive Option dienen, insbesondere, wenn sie nachhaltig aus lokalen Wäldern stammen. Ein konkretes Pilotprojekt in Hennigsdorf betreibt eine Holzhackschnitzel-Anlage, die sogar Strom erzeugt. Jedoch ist zu bedenken, dass Holzhackschnitzel aufgrund begrenzter Ressourcen und steigender Nachfrage möglicherweise unwirtschaftlicher werden. Wenn Holzerzeugnisse ein Pfeiler des langfristigen Wärmekonzepts sein sollen, sollte die Kommune unbedingt mit den benachbarten Kommunen in Gesprächen abklären, inwieweit die lokalen Ressourcen für Alle reichen. Eine weitere Alternative ist der Einsatz von Großwärmepumpen, die eine externe Wärmequelle benötigen, wie beispielsweise Flüsse, Seen, Abwärme von Kläranlagen oder industrielle Abwärme. Die Verfügbarkeit von ausreichender Stromleistung und die Wirtschaftlichkeit der Strompreise sind entscheidende Faktoren bei der Nutzung von Wärmepumpen. Eine vollständige Dekarbonisierung von Gemeinden und Städten wird die Nutzung einer Vielzahl erneuerbarer Wärmequellen erfordern. Der wirtschaftlich optimale Mix hängt von den lokalen Gegebenheiten ab. Liefern Solarthermieanlagen wirtschaftlich attraktive Wärme? Die Wärmekosten belaufen sich je nach Anlage zwischen 55 und 60 Euro pro Megawattstunde, was etwa 5 bis 6 Cent pro Kilowattstunde vor Förderung entspricht. Davon gehen die Erleichterungen durch Förderung noch ab, z.B. die umfassende Förderung durch das BEW. Im Gegensatz zu anderen Energieträgern - fossile, aber auch Holzerzeugnisse - sind diese Wärmekosten für die Lebensdauer der Anlage im Voraus fest kalkulierbar. Je teurer die fossilen Energien, aber auch Holzerzeugnisse werden, desto besser wird die Wirtschaftlichkeit der Solarthermie. Ein weiteres Argument für den Einsatz von Solarthermie ist ihre dauerhafte lokale Verfügbarkeit und die damit verbundene Versorgungssicherheit. Zudem bleiben im Gegensatz zu fossilen Brennstoffen die Investitionen innerhalb Deutschlands und der Region, was zur Stärkung der Wirtschaft vor Ort beiträgt. Gibt es Energieerzeugertypen, die aus wirtschaftlichen oder technischen Gründen nicht sinnvoll mit solarthermischen Anlagen kombiniert werden können? Nein, grundsätzlich kann Solarthermie mit verschiedenen Technologien kombiniert werden, um eine zuverlässige und nachhaltige Wärmeversorgung über ein Wärmenetz zu gewährleisten. Die Entscheidung für den einen Technologiemix zur Wärmeversorgung fällt letzten Endes meist aus Wirtschaftlichkeitsgründen und der Flächenverfügbarkeit. Im Einfamilienhaussektor z.B. zeigt sich derzeit ein Trend hin zu Wärmepumpen in Verbindung mit Photovoltaikanlagen auf den Dächern. Für größere Systeme sind jedoch weitere Randbedingungen zu berücksichtigen. Photovoltaik erzeugt im Vergleich zu Ökologie in großen Solarthermieanlagen Zwischen und neben der Solarthermieanlage Ludwigsburg ist Raum für ökologische Vielfalt. Hier im Bild: Ein Teil des Eidechsenhabitats, das auch anderen Kleinlebewesen Lebensraum bietet - als Ausgleich für Auswirkungen anderer Bauprojekte; außerdem der rege genutzte Besuchersteg. Bild: Solites www.solare-wärmenetze.de Solarthermie auf derselben Fläche nur etwa ein Drittel bis ein Viertel der Energie in Form von Strom. Die Effizienz von Wärmepumpen hängt von der zu erreichenden Vorlauftemperatur ab, wobei höhere Temperaturen mehr Strom erfordern. Die Integration von Windstrom in Verbindung mit Wärmepumpen kann eine sinnvolle Option sein, insbesondere wenn der Windstrom kostengünstig und erneuerbar ist. Die Kombination von Photovoltaik und Wärmepumpen erfordert eine detaillierte Analyse des aktuellen Strommarktes, da Transportkosten und -gebühren die Wirtschaftlichkeit beeinflussen, insbesondere wenn die Photovoltaikanlage räumlich von der Wärmepumpe entfernt ist. Letztendlich müssen die Entscheidungen den spezifischen lokalen Gegebenheiten und der aktuellen Marktlage entsprechen. In einigen Fällen können getrennte Systeme für Strom- und Wärmeerzeugung wirtschaftlich vorteilhafter sein. Welche ökologischen Vorteile bieten Solarthermie-Freiflächenanlagen für Fernwärmenetze? In vielen Fällen wurden bisher ökologische Ausgleichsmaßnahmen von den Genehmigungsbehörden gefordert, wenn Solarthermieanlagen auf ehemaligen landwirtschaftlich genutzten Flächen installiert werden sollten. Tatsächlich ist die Fläche nach der Installation meist jedoch ökologisch wertvoller, inbesondere nach intensiver Landwirtschaftsnutzung. Anstelle von monotonen Ackerflächen entstehen Magerrasen-Flächen oder bunte Blumenwiesen. Die Beweidung mit Schafen ist eine zusätzliche Möglichkeit, um die Flächen ökologisch zu pflegen. Im Gegensatz zu Ziegen, die auf die Kollektoren klettern könnten, tragen Schafe zur Pflege der Fläche bei, ohne die Anlagen zu beschädigen. Darüber hinaus können Biotope geschaffen werden, die Lebensräume für verschiedene Tierarten bieten. Ein Beispiel hierfür ist die Integration von Lebensräumen für Zauneidechsen in Ludwigsburg, die infolge anderer Bauprojekte vertrieben wurden. Interessanterweise zeigt sich in der Praxis von laufenden Anlagen, dass die teilverschatteten Bereiche der Solarthermieanlagen unterhalb der Kollektoren im Jahresverlauf eine eigene Wertigkeit erhalten. In den vergangenen Dürresommern waren diese Bereiche grüner und vielfältiger bewachsen als die trockenen, sonnenbeschienenen Zwischenräume. Diese Entwicklung ist vor dem Hintergrund zunehmender Temperaturen und unvorhersehbarer Niederschläge von großem Interesse. Wichtig ist zu betonen, dass Freiflächen- Solarthermieanlagen keine Fläche „verbrauchen“ und nur minimal versiegeln - im Gegensatz zu konventionellen Bauwerken wie Heizkraftwerken. Solarthermie-Großkollektoren werden entweder aufgeständert oder mit Streifenfundamenten verankert. Trotz der technischen Natur der Anlagen sind Solarthermie-Freiflächenanlagen ökologisch vorteilhaft für die Gesamtfläche und liefern einen großen Beitrag zu einer nachhaltigen, treibhausgasneutralen Wärmeversorgung. Welche Rolle spielen große Wärmespeicher in Fernwärmesystemen mit Solarthermie? Wärmespeicher puffern Schwankungen in der Wärmeerzeugung ab. Wichtig ist: Wärmespeicher stellen nur ein Element im Gesamtsystem eines Wärmenetzes dar. Auch Wärmequellen, Netz und Abnehmer sind notwendig, um eine effiziente Wärmeversorgung sicherzustellen. Ob ein großer Wärmespeicher erforderlich ist, hängt vorrangig vom solaren Deckungsanteil, also vom Ertrag der Solarthermieanlage und dem Bedarf der Netzseite ab. Die sorgfältige Auslegung und Kombination mit anderen Wärmeerzeugern und Wärmespeichern ist dabei entscheidend: Das System muss jeweils auf die spezifischen Gegebenheiten vor Ort zugeschnitten sein. Ein Beispiel: In Leipzig entsteht derzeit die größte Solarthemieanlage Deutschlands mit einer geplanten Bruttokollektorfläche von 65.000 Quadratmetern. Die Anlage soll ca. 20 Prozent des sommerlichen Wärmebedarfs der Stadt Leipzig decken. Auf den jährlichen Wärmebedarf hochgerechnet sind das etwa zwei Prozent. Trotz der beträchtlichen Anlagengröße wird jedoch kein großer Wärmespeicher benötigt, da das Wärmenetz die Wärme zu jeder Zeit vollständig aufnimmt. Die schiere Größe der Solarthermieanlage diktiert also nicht, ob oder in welcher Größe ein Wärmespeicher vorgesehen werden muss. Vielmehr ist es der solare Kleinteilige Ökologie in Wärmekraftwerken? Möglich! Ein Blick unter die Solarkollekoren der Großanlage Lemgo zeigt: Hier ist keine Fläche versiegelt. Auch die teilverschatteten Bereiche sind ökologisch wertvoll. Bild: Solites Infoblatt Nr. 21 Deckungsanteil am Gesamtwärmebedarf: Soll der Solarertrag mehr als 15 Prozent der jährlich benötigten Wärme ausmachen, werden größere Speicher nötig. Wie findet die Kommune heraus, ob sie einen großen Wärmespeicher benötigen wird? Hilft dabei die kommunale Wärmeplanung? Grundsätzlich gilt: Ergebnis der kommunalen Wärmeplanung ist nicht die konkrete Empfehlung für eine Solarthermieanlage, einen Wärmespeicher oder andere Anlagen mit konkreten Spezifikationen, genausowenig wie deren Standorte. Stattdessen legt die Wärmeplanung lediglich fest, welche Siedlungsgebiete über ein Wärmenetz versorgt werden sollen und welche nicht. In einem weiteren Schritt muss die Kommune ermitteln, wie sie den Wärmebedarf für die Wärmenetze decken kann. Statt sofort umfassende Simulationen durchzuführen, kann zunächst eine grobe Analyse durchgeführt werden, um verschiedene Optionen für die Wärmeversorgung abzuschätzen. Hierbei werden mögliche Varianten betrachtet und grobe Kostenschätzungen der nötigen Investitionen erstellt, um ein Verständnis für die wirtschaftlich und technologisch aussichtsreichsten Ansätze zu erhalten. Dies kann durch fachkundige Beratung geschehen und erfordert in der Regel finanzielle Ressourcen. Die grobe Analyse umfasst eine Bewertung verschiedener Optionen wie Tiefengeothermie, Windenergie, oberflächennahe Geothermie und Freiflächensolarthermie. Dies ermöglicht es der Kommune, ein erstes Verständnis dafür zu entwickeln, welche Wärmeversorgungs- Optionen es wert sind, näher untersucht zu werden. Für die ausgewählten Optionen werden dann Fachpartner hinzugezogen, um detaillierte Simulationen und Entwicklungen durchzuführen. Auf diese Weise kann die Kommune besser verstehen, wie groß und kostspielig die ausgewählten Optionen tatsächlich sind, was einen schnellen Übergang von der Planung zur Realisierung ermöglicht. POTENZIAL FÜR KLIMASCHUTZ Die Online-Sprechstunden Solarthermie verdeutlichten die vielfältigen Potenziale dieser Technologie für eine nachhaltige Wärmeversorgung. Durch ihre effiziente Integration in Fernwärmenetze, ihre Versorgungssicherheit und Vielseitigkeit sowie ihre ökologischen Vorteile bietet Solarthermie eine attraktive Lösung für Kommunen und kommunale Akteure auf dem Weg zu einer klimafreundlichen Wärmeversorgung. Kommunen können großflächige Solarthermieanlagen als einen vielversprechenden Baustein für die kommunale Wärmewende verstehen - im Zusammenspiel mit anderen erneuerbaren Erzeugern. IMPRESSUM Das Infoblatt Solare Wärmenetze ist eine Initiative im Rahmen vom Projekt SolnetPlus – Solare Wärmenetze als eine Lösung für den kommunalen Klimaschutz. Mehr unter: www.solare-wärmenetze.de Herausgeber: Solites Steinbeis Innovation gGmbh Redaktion: Deutsches Institut für Urbanistik (Difu), Paul Ratz, Solites, Anna Laura Ulrichs, Dirk Mangold Veröffentlichung: Mai 2024 | ISSN (Print) 2750-753X | ISSN (Online) 2750-7548 Die Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung der Fördermittelgeber wieder. Weder die Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. unterstützt durch die Industrieinitiative Solare Wärmenetze der Solarthermieanbieter (IniSW) PARTNER Beginnen Sie Ihre Wissensreise auf: https://www.solare-waermenetze.de oder starten Sie hier: FAQ zu Solarthermie in Wärmetzen 36 wesentliche Fragen und Antworten, um Kommunen und Stadtwerke zu unterstützen (Scan QR-Code) WIE GEHT ES IN IHRER KOMMUNE WEITER?

Anna Laura Ulrichs2024-06-25T15:13:54+02:00Freitag, 31. Mai, 2024|

Klimahacks #3 Freiflächen-Solarthermie für Kommunen – Hinweise und Handlungsempfehlungen

Die Solarthermie hat sich in Deutschland zu einer wichtigen Säule der Wärmeversorgung entwickelt, insbesondere in städtischen Fernwärmenetzen und ländlichen Gemeinden. Früher wurden solche Anlagen oft nur als Ergänzung betrachtet, um den Verbrauch konventioneller Brennstoffe zu senken. Doch die Zeiten haben sich geändert. Angesichts des Ziels einer vollständig klimaneutralen Wärmeerzeugung bis 2045 müssen neue Investitionen bereits heute zur Versorgungssicherheit beitragen. Insbesondere die Energiekrise von 2022, mit ihren explodierenden Erdgaspreisen, hat das Interesse an erneuerbaren und lokalen Wärmequellen deutlich gesteigert. Fakt ist, Freiflächen-Solarthermieanlagen sind bereits seit vielen Jahren erfolgreich im Einsatz. Sie bieten nicht nur langfristig kalkulierbare Kosten pro Kilowattstunde, sondern erzeugen auch den höchsten Energieertrag pro Fläche im Vergleich zu anderen erneuerbaren Energien. Vor allem die Flexibilität und Vielseitigkeit der Technologie macht die Solarthermie zu einer wertvollen Komponente im Fernwärme- Mix. Um ihre Integration in Wärmenetze zu optimieren, spielen Wärmespeicher zukünftig eine immer wichtigere Rolle. Diese Speicher gleichen die fluktuierende Energieerzeugung der Solarthermie aus und verbessern gleichzeitig die Effizienz anderer Erzeuger wie Holzkessel, Wärmepumpen und Geothermieanlagen. Auch in anderen Städten und Gemeinden nehmen Freiflächen- Solarthermieprojekte an Größe und Bedeutung zu. Die Anlagen werden nicht nur größer, sondern decken auch einen immer größeren Anteil des Wärmebedarfs ab, wie beispielsweise in Lemgo, Ludwigsburg, oder Greifswald und zukünftig auch in Bad Rappenau und Leipzig. Auch die Integration von Wärmespeichern schreitet voran, wie die derzeitigen Bauvorhaben in Hechingen im Zollernalbkreis und 2 | #KLIMAHACKS: FREIFLÄCHEN-SOLARTHERMIE FÜR KOMMUNEN – HINWEISE UND HANDLUNGSEMPFEHLUNGEN in Bracht, Nordhessen, zeigen. In Bracht baut eine Bürgerenergiegenossenschaft eine Solarthermieanlage mit einem 13.000 m2 großen Kollektorfeld und einem knapp 27.000 m3 großen Erdbecken-Wärmespeicher. Mit einer solchen Kombination soll der lokale Wärmebedarf zu einem Großteil aus erneuerbaren, emissionsfreien Quellen gedeckt werden. Die Entwicklung der Solarthermie in Deutschland zeigt deutlich, dass diese Technologie nicht nur eine nachhaltige Alternative ist, sondern auch eine Schlüsselrolle in der kommunalen Wärmeversorgung spielen kann. Um diesen Trend zu fördern, erhalten Kommunen mit dieser #Klimahacks- Ausgabe wichtige Hinweise zur Umsetzung von Freiflächen- Solarthermie. Dabei werden u.a. Themen wie die Schaffung geeigneter Rahmenbedingungen, verschiedene Betreibermodelle, die Suche nach Unterstützer*innen und geeigneten Flächen sowie die Vorteile und Möglichkeiten der Solarthermie in Wärmenetzen behandelt. / DIE ZUKUNFT DER FREIFLÄCHEN-SOLARTHERMIEANLAGEN EFFIZIENZ UND VIELSEITIGKEIT: WEITERFÜHRENDE LINKS News, Veranstaltungen, Erfahrungsberichte u.v.m. zu solaren Wärmenetzen: https://www.solare-waermenetze.de Infoblatt zur Solarthermie in Kombination mit anderen Wärmeerzeugern (SolnetPlus, 2024): https://t1p.de/i96h6 Infoblatt zur solaren Wärmeversorgung in Bracht (SolnetPlus, 2024): https://t1p.de/oqqms Kurzfilm über den Bau des Wärmespeichers in Bracht: https://t1p.de/du6j8 Informationsportal der Stadtwerke Leipzig zur Freiflächen- Solarthermieanlage: https://t1p.de/1ccyr Infos und Video des SWR zur Wärmeversorgung für Hechingen: https://t1p.de/rzqrp Das Kollektorfeld des iKWK-Systems der Stadtwerke Lemgo.

Anna Laura Ulrichs2024-06-25T15:27:41+02:00Mittwoch, 29. Mai, 2024|

Infoblatt Solare Wärmenetze Nr.19 Marktstatus 2024

www.solare-wärmenetze.de Infoblatt Nr. 19 2024 werden die Rekorde purzeln im Bereich der netzgebundenen großen Solarthermieanlagen für Fernwärmenetze. Die bislang größten Solarthermieanlagen Deutschlands in Greifswald (18.800 m2 Kollektorfläche, in Betrieb seit 2022) und Ludwigsburg (14.800 m2, 2020) werden ihre Spitzenpositionen ver lie ren. Denn im Frühjahr und Sommer 2024 entsteht in Bad Rappenau eine Solarthermieanlage mit rund 29.000 m2 Bruttokollektorfläche. Und in Leip zig, wo seit März 2024 gebaut wird, sollen es bis zur Inbetriebnahme Ende 2025 sogar etwa 65.000 m2 werden. Das Wachstumstempo ist beachtlich. Im Mai 2024 sind nach der laufenden Erhebung des Steinbeis-Forschungsinstituts Solites 58 Solarthermieanlagen mit gut 163.000 m2 Bruttokollektorfläche in Wärmenetzen in Betrieb. Das entspricht einer Wärmeleistung von 114 Megawatt (MW). 13 weitere Kollektorfelder mit 107 MW befinden sich im Bau oder in konkreter Planung. Solare Leuchttürme Darunter sind einige sehr interessante Leuchtturmprojekte – nicht nur in punc to Anlagengröße. Beispielsweise wird die bereits erwähnte Anlage in Bad Rappenau dort nicht nur das Fernwärmenetz versorgen, sondern auch industrielle Prozesswärme liefern. Im Sommer, wenn die Solarerträge besonders Der Bestand an großen Solarthermieanlagen in Fernwärmenetzen ist in den vergangenen Jahren stark gewachsen. Aktuell sind 58 Anlagen in Betrieb. Die gesamte Kollektorfläche könnte sich bis Ende 2025 angesichts der aktuell in Bau und Planung befindlichen Projekte fast verdoppeln. MEHR SONNE IN WÄRMENETZEN GROSSE SOLARTHERMIE AUF WACHSTUMSKURS Der Markt für Solarthermieanlagen in Wärmenetzen hat sich in den letzten Jahren beschleunigt – wenngleich noch nicht verstetigt. Die weitere Entwicklung hängt unter anderem von der Genehmigungsgeschwindigkeit ab. Marktprognose: Starkes Wachstum ist möglich Alle Fotos: Guido Bröer Infoblatt Nr. 19 hoch sind, aber der Wärmebedarf in Netz um ein Vielfaches geringer ist als im Winter, wird diese Anlage bis zu 3 MW Wärmeleistung direkt an einen Futtermitteltrockner abgeben. Auch nachts kann die Trocknungsanlage Tierfutter beispielsweise aus Möhren oder Luzer ne mit Solarenergie produzieren. Denn die überschüssige So lar ernte des Ta ges lässt sich in einem 8.000 m3 Fernwärmewasser fassenden Wärmespeicher bunkern. Im Verbund mit Biogasanlagen und einem Holzheizwerk sowie einer Photovoltaikfreiflächenanlage hilft die Solarthermie in Bad Rappenau sogar, lagerfähige Energiepotenziale vom Sommer in den Winter zu verschieben. Als Energiespeichermedium dienen dann gewissermaßen Altholz und Biomethan in Erdgasqualität (wie das funktioniert, erklärt Infoblatt Nr. 18 aus dieser Reihe: tinyurl.com/Solarthermiebadrappenau). 70 Prozent Solarwärme Ebenfalls ein Novum in Deutschland stellt das solare Wärmenetz der Bürgerenergiegenossenschaft Solarwärme Bracht eG dar. Dieses Dorf nördlich von Marburg wird sich nach Fertigstellung der in Bau befindlichen Anlagen übers Jahr zu etwa 70 Prozent mit Solarwärme versorgen können. Die Energie, die von rund 13.000 m2 Solarkollektorfläche im Sommer geerntet, aber von den rund 200 Abnehmern größtenteils nicht direkt verbraucht wird, wandert in einen Erdbecken-Wärmespeicher. Dieser in den Untergrund gegrabene, mit Spezialfolie ausgekleidete und mit einer wärmedämmenden Deckelkonstruktion nach oben isolierte Speicher fasst 26.600 Kubikmeter Fernwärmewasser. Darin kann die Solarenergie bis in die kalten Wintermonate verwahrt werden. Hinzu kommt in dem Brachter System als Innovation der besondere Einsatz von zwei Wärmepumpen. Sie sollen Energie aus dem Speicher entnehmen, wenn dessen Temperatur im Winter nicht mehr ausreicht, um das Netz direkt zu versorgen. Die elektrischen Wärmepumpen nutzen Energiemengen mit geringer Temperatur aus dem unteren Bereich des 14 Meter tiefen Speicherbeckens. Damit helfen sie indirekt, den Wirkungsgrad der Solarkollektoren zu verbessern. Denn diese werden über den Rücklauf des Solarkreises aus dem unteren Speicherbereich mit den durch die Wärmepumpen abgesenkten Temperaturen beschickt. Die Sonnenfänger können auf dem geringeren Temperaturniveau noch effizienter arbeiten, weil sie weniger Energie an die Umgebung abstrahlen. Mehrere Speicher kombiniert Eine noch andere Strategie verfolgen auch die Stadtwerke Hechingen mit ihrem für ein großes Neubaugebiet geplanten Wärmenetz. Zwar ist auch hier ein solarer Deckungsgrad von rund 70 Prozent geplant, und es spielt wiederum ein Erdbeckenwärmespeicher die zentrale Rolle. Hinzu kommt allerdings neben einer Wärmepumpe ein Erdsondenspeicherfeld, das geothermische Energie nutzbar machen und das durch Solarenergie regeneriert werden soll. Diese Beispiele zeigen, dass große, fernwärmegekoppelte Solarthermieanlagen zunehmend tragende Aufgaben in CO2-neutralen und sektorenkoppelnden Energiesystemen übernehmen. Prognosen für die kommenden Jahre sehen deshalb einen weiterhin wachsenden Bedarf für große Solarthermieanlagen. Diese werden aus Kostengründen zu meist auf Freiflächen installiert. Der Trend wird verstärkt durch die wachsende Bedeutung der Fernwärmeversorgung in Deutschland. Sie hat kaum jemals ein so hohes Ansehen genossen wie in jüngster Zeit. Mit der Verpflichtung für alle Kommunen, sich in Form einer kommunalen Wärmeplanung mit der künftigen klimaneutralen Wärmeversorgung auf ihrem jeweiligen Gebiet auseinanderzusetzen, bleiben als skalierbare Optionen im Grunde nur zwei strategische Wege: Fernwärme Solare Wärmenetze in Deutschland 58 große Solarthermieanlagen in Wärmenetzen verteilen sich über Deutschland. 70 Prozent Solarwärme www.solare-wärmenetze.de Magdalena Berberich, stellvertretende Leiterin des Steinbeis-Forschungsinstituts Solites, ordnet den aktuellen Marktstatus der großen Solarthermie ein und gibt einen Ausblick. Steckt die Solarthermie für Wärmenetze noch in den Kinderschuhen, da nur ein sehr kleiner Teil der bestehenden Wärmenetze sie nutzt? Die Solarthermie für Wärmenetze, also großflächige Kollektortypen wie Flachkollektoren und Vakuumröhrenkollektoren, ist eine ausgereifte Technologie. Sie wur de bereits vielfach von Stadtwerken und anderen Wärmenetzbetreibern erprobt. Diese Betreiber, die bereits Erfahrungen mit dieser Technologie haben, wissen, dass sie gut funktioniert. Die Technologie wurde erprobt, vermessen und bewiesen. Die zahlreichen positive Beispiele zeigen, dass Solarthermie in weiteren Wärmenetzen eingesetzt werden kann. Was wir jetzt noch brauchen, ist die Umsetzung großer Anlagen in größerer Stückzahl und Dimensionierung als bisher. Dafür müssen die Informationen natürlich in den Markt gelangen. In welcher Größe sind Solar thermiean lagen für Wärmenetze sinnvoll? Wir sprechen von Großanlagen ab etwa 500 Quadratmetern Kollektorfläche. In Deutschland wird jetzt eine Anlage mit rund 65.000 Quadratmetern gebaut – in Leipzig. Das sind die Größenordnungen, die wir aktuell sehen. Früher wurden eher kleinere Anlagen mit einer Fläche von 1000, 2000 oder 5000 Quadratmetern gebaut, da die Technologie noch erprobt werden musste und das Vertrauen in sie noch nicht so groß war. Jetzt sehen wir jedoch, dass sich der Markt vermehrt zu Großanlagen bewegt, die andere Dimensionen haben. Wie groß ist der Beitrag, den eine Solarthermie-Anlagen in einem Wärmenetz leisten kann? Das kann sehr unterschiedlich sein. Für ein einzelnes Wärmenetz kann die Solarthermie einen kleinen Anteil an der Wärmeversorgung bereitstellen, zum Beispiel etwa 5 Prozent, ohne dass eine große Speicherkapazität erforderlich ist. Ab etwa 15 Prozent oder 20 Prozent wird jedoch eine Wärmespeicherung notwendig, also ein ausreichend großes Speichervolumen, um die Solarwärme effizient in das Gesamtsystem zu integrieren. Es ist wichtig, diese Technologie nicht isoliert zu betrachten, sondern zusammen mit Wärmespeichern und anderen Wärmeerzeugern, die eben falls zur Wärmeversorgung beitragen. Kann man auch noch größere Deck ungs anteile erreichen? Ja, es ist möglich, einen großen und so gar den überwiegenden Anteil der Wärmeversorgung in einem Wärmenetz mit Solarthermie zu decken. Dafür sind viel größere Langzeit-Wärmespeicher notwendig. Und es ist eine umfassende Betrachtung der Systemintegration erforderlich, wobei So lar thermie, Wärmespei cher und ande re Tech no logien kombiniert wer den, um ein Wärmenetz mit sehr hohen Solaranteilen zu erreichen. Auch dafür gibt es bereits gute Beispiele. Wie wirtschaftlich ist die Solarthermie für die Wärmeversorgung? Die Solarthermie ist eine Technologie mit hoher Anfangsinvestition und dann über Jahrzehnte gleichbleibenden und daher planbaren Kosten. Die Kosten liegen bei etwa 55 bis 60 Euro pro Megawattstunde, wovon die Förderung noch ab geht. Allerdings hängt der tatsächliche Preis, zu dem die Wärme an die Kunden verkauft wird, nicht nur von den solaren Wärmegestehungskosten ab, sondern es spielen verschiedene Faktoren hinein, wie zum Beispiel die mit der Solarthermie kombinierten Technologien, Abwärmepotenziale vor Ort oder die Netzstruktur insgesamt. Diese Faktoren können den Preis günstiger oder teurer machen. Wird die Solarthermie für Wärmenetze zum Selbstläufer, oder bleibt es für die Branche ein eher schwieriges Geschäft? Jedes Projekt ist eine Herausforderung und erfordert oft eine lange Entwicklungszeit, bevor es umgesetzt wird. Manchmal werden Projekte geplant, aber dann doch nicht realisiert. Das gilt für viele Technologien – und auch für die Solarthermie. Aktuell sind in Deutschland etwa 160.000 m2 Solarthermie-Kollektoren in Wärmenetzen installiert. In den nächsten 3 bis 4 Jahren werden voraussichtlich weitere 500.000 Quadratmeter hinzukommen. Die Solarthermie für Wärmenetze wird also deutliche Fortschritte machen. Und das Potenzial ist riesig. INTERVIEW: MAGDALENA BERBERICH Infoblatt Nr. 19 IMPRESSUM Das Infoblatt Solare Wärmenetze ist eine Initiative im Rahmen vom Projekt SolnetPlus – Solare Wärmenetze als eine Lösung für den kommunalen Klimaschutz. Mehr unter: www.solare-wärmenetze.de Herausgeber: Solites Steinbeis Innovation gGmbh Redaktion + Text: Guido Bröer, Solarthemen Veröffentlichung:Mai 2024 | ISSN (Print) 2750-753X | ISSN (Online) 2750-7548 Die Verantwortung für den Inhalt dieser Publikation liegt beim Autor und der Herausgeberin. Der Inhalt gibt nicht unbedingt die Meinung der Fördermittelgeber wieder. Weder die Fördermittelgeber noch Autor und Herausgeberin übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. unterstützt durch die Industrieinitiative Solare Wärmenetze der Solarthermieanbieter (IniSW) PARTNER als zentrale Lösung und Wärmepumpen als dezentrale Lösung. Dies sind die beiden Schlüsseltechnologien für den Über gang zu einer klimaneutralen Wärmeversorgung. Anspruchsvolle Ziele Auf dem sogenannten Fernwärmegipfel 2023 wurden von Vertreter:innen der Bundesregierung, der Wärmenetzbranche, der Kommunen und weiterer Inter essengruppen anspruchsvolle Ziele ge setzt: • Verdreifachung der an Fern- und Nahwärmenetze angeschlossenen Gebäu de bis 2045 • mittelfristig An schluss von mindestens 100.000 Gebäuden pro Jahr • durchschnittlicher Anteil von 50 Prozent erneuerbarer Energien und un vermeidbarer Abwärme in Wärmenetzen bis 2030. Setzt man diese Ziele ins Verhältnis zu den 4.100 Fernwärmesystemen mit 34.000 Kilometer Leitungen, die heute 140 Terawattstunden Wärme liefern und 14 Prozent des Wärmebedarfs im deutschen Gebäudesektor decken, dann ist klar: Der Ausbaubedarf für Fernwärmeerzeugungsanlagen, die erneuerbare Energien nutzen, ist in den bestehenden Netzen enorm. Hinzu kommt eine gesetzliche Vorgabe für neue Netze: Laut Wärmeplanungsgesetz müssen ab dem 1. März 2025 mindestens 65 Prozent der in neue Wärmenetze eingespeisten Energie aus Abwärme stammen oder erneuerbar sein. Wirtschaftliche Lösung Große Solarfelder haben dabei gute Chancen, in vielen Fällen zum Mittel der Wahl zu werden. Über die Lebensdauer bieten sie nach Angaben des Fernwärmeverbandes AGFW stabile Wärmegestehungskosten von 50-60 Euro pro Megawattstunde vor einer etwaigen Förderung. Dabei fördert das 2022 gestartete Bundesförderprogramm für effiziente Wärmenetze (BEW) den Umbau zu erneuerbaren Wärmequellen mit 40 Prozent der Investitionskosten. Hinzu kommt der BEW-Betriebskostenzuschuss, der Solarthermieanlagen für Wärmenetze wirtschaftlich attrak tiv machen. Nachdem 2024 in Meldorf (Schleswig-Holstein) der erste kommerzielle Erdbecken-Wärmespeicher mit 43.000 Kubikmetern Fassungsvermögen in Betrieb gegangen ist, sind mittlerweile in Deutschland etwa in Dutzend ähnlicher Speicherprojekte in Planung. Gebaut wird bereits im hessischen Bracht (Foto) und in Hechingen (Baden-Württemberg). In diesen beiden Projekten soll die Sonne mithilfe der Speicher jeweils 70 Prozent des jährilichen Wärmebedarfs decken. Jetzt kommen die großen Speicher

Anna Laura Ulrichs2024-05-30T15:20:57+02:00Montag, 27. Mai, 2024|

Kommunale Wärmeplanung und Solarenergie – Raphael Gruseck LEA Ludwigsburg

Im Interview: Raphal Gruseck von der Energieagentur Kreis Ludwigsburg LEA e. V. zu u.A. den Themen: - Was haben BürgerInnen und Bürger von der kommunale Wärmeplanung? - Ist Solarwärme günstig? - Wie verhalten sich Freiflächen-Solarthermie und Photovoltaik zueinander? - Macht man sich durch den Anschluss an ein Fernwärmenetz nicht abhängig? Unser Interviewpartner befindet sich auf der Besucherplattform oberhalb der Solarthermie-Anlagen Ludwigsburg-Kornwestheim, die mit 14.800 qm Bruttokollektorfläche lange die größte Solarthermieanlage Deutschlands war.

Anna Laura Ulrichs2024-05-31T16:05:33+02:00Sonntag, 17. März, 2024|

Solare Wärmewende – Im Gespräch: Felix Landsberg (HIR) und Jan Walter (Difu)

Was haben Kommunen von Sonne im Wärmenetz? Wie können Kommunen passende Flächen für ein Solarthermie-Kollektorfeld finden? Und wie kann das Projekt SolnetPlus dabei helfen? Felix Landsberg vom Hamburg Institut und Jan Walter vom Deutschen Institut für Urbanistik (Difu) sprechen hier im Podcast-Style über ihren Draht zu den solaren Wärmenetzen.

Asma Sohail2023-09-11T13:11:13+02:00Montag, 11. September, 2023|

FAQ – Fragen und Antworten zur solaren Fernwärme

FAQ-Fragen und Antworten zur solaren Fernwärme Frankfurt, Juni 2023 2 Dokumenten-Informationen: Autoren: Thomas Pauschinger, Kibriye Sercan-Çalışmaz AGFW-Projektgesellschaft für Rationalisierung Information und Standardisierung mbH (AGFW) Dirk Mangold, Anna Ulrichs Solites - Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme (Solites) Felix Landsberg, Marleen Greenberg Hamburg Institut Research gGmbH (HIR) Paul Ratz, Deutsches Institut für Urbanistik gGmbH (Difu) Kontakt: Kibriye Sercan-Çalışmaz AGFW-Projektgesellschaft für Rationalisierung, Information und Standardisierung mbH, Stresemannallee 30, 60596 Frankfurt, www.agfw.de Version: Juni 2023 Arbeitspaket: AP3 Aktivierungsinitiative Wärmeversorgungsbranche Produkt: Handreichung „FAQ-Fragen und Antworten zur solaren Fernwärme“ Das vorliegende Dokument entstand im Rahmen des Verbundvorhabens „SolnetPlus – Solare Wärmenetze als eine Lösung für den kommunalen Klimaschutz. Das diesem Bericht zugrundeliegende Vorhaben wird mit Mitteln des Bundesministeriums für Wirtschaft und Klimaschutz im Rahmen der Nationalen Klimaschutzinitiative gefördert (FKZ: 67KF0119A-D). Haftungsausschluss: Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den Autoren. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder die Autoren noch der Fördermittelgeber übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. 3 Inhaltsverzeichnis 1 Technik Solarthermie ........................................................................................................ 5 1.1 Welche Arten von Kollektoren sind für die Einbindungen in Wärmenetze geeignet? A) ........ 5 1.2 Ist eine Nachführung der Sonnenkollektoren sinnvoll? A)....................................................... 5 1.3 Welche Möglichkeiten zum Frostschutz bestehen? S)............................................................ 6 1.4 Nimmt die Effizienz der Sonnenkollektoren über die Betriebsdauer ab? S) ........................... 6 1.5 Sind Hybridkollektoren (Strom und Wärme) für die solare Fernwärme geeignet? A) ............. 7 2 Wärmespeicher ................................................................................................................. 7 2.1 Benötigen in Wärmenetze eingebundene Solarthermieanlagen Wärmespeicher? A) ............ 7 2.2 Welche Möglichkeiten der saisonalen Wärmespeicherung bestehen? S) .............................. 8 3 Freiflächenentwicklung ..................................................................................................... 9 3.1 Sollten Kollektorfelder nicht eher auf Gebäudedächer? A) ..................................................... 9 3.2 Wieviel Landfläche ist zur Aufstellung einer bestimmten Kollektorfläche erforderlich? S) .... 10 3.3 Welche Flächen sind für eine Freiflächen-Solarthermieanlage nutzbar? H) ......................... 10 3.4 Wie weit kann die Freifläche vom Einbindepunkt entfernt sein? S) ...................................... 11 3.5 Welche Möglichkeiten zur mehrfachen Flächennutzung gibt es? H) .................................... 11 3.6 Kann die Fläche mehrfach zur Wärmeerzeugung genutzt werden (z.B. zusätzlich für ein Wärmepumpen-Sondenfeld)? A) ....................................................................................................... 12 3.7 Wie werden Kollektorfelder auf Freiflächen errichtet? A) ...................................................... 12 3.8 Wie gehe ich bei der Suche und Entwicklung von Freiflächen vor? H) ................................. 13 4 Umweltbelange ................................................................................................................14 4.1 Wie ist eine naturnahe Gestaltung von Freiflächenanlagen möglich? H) ............................. 14 4.2 Wie integrieren sich Anlagen gut in die Landschaft? H)........................................................ 14 5 Netzeinbindung ................................................................................................................15 5.1 Bis zu welchen Netztemperaturen kann Solarthermie eingesetzt werden? A) ..................... 15 5.2 Warum wirken sich niedrige Vor- und Rücklauftemperaturen günstig aus? S) ..................... 15 5.3 Ist eine stabile Versorgung bei fluktuierender Einstrahlung möglich? S) .............................. 16 5.4 Wie wirkt sich die fluktuierende Leistung auf das Wärmenetz aus? S) ................................. 16 5.5 Welche Möglichkeiten der Einbindung gibt es bei größeren FW-Netzen? S) ....................... 17 5.6 Mit welchen weiteren Wärmeerzeugern lässt sich Solarthermie kombinieren? A) ............... 17 6 Auslegung und Ertrag ......................................................................................................18 4 6.1 Welchen Wärmeertrag und welche Leistung erbringt eine Solarthermieanlage? S) ............ 18 6.2 Welche solaren Deckungsanteile lassen sich erreichen? S) ................................................ 19 6.3 Mit welchem Wärmeertrag je Hektar Landfläche kann man rechnen? S) ............................. 19 6.4 Wie funktionieren Verfahren zu Ertragsgarantie? A) ............................................................. 19 7 Wirtschaftlichkeit ..............................................................................................................20 7.1 Wie hoch sind die Investitionskosten für Solarthermieanlagen? A) ...................................... 20 7.2 Wie hoch sind die Kosten für Betrieb und Instandhaltung einer Solarthermieanlage? A) .... 21 7.3 Welche Wärmegestehungskosten werden erreicht? A) ........................................................ 21 7.4 Wie werden die Kosten für die Landfläche berücksichtigt H) ................................................ 22 7.5 Welche Fördermöglichkeiten für Solarthermieanlagen gibt es? A) ....................................... 22 8 Projektentwicklung ...........................................................................................................23 8.1 Welche Phasen sind bei der Projektentwicklung zu berücksichtigen? H) ............................. 23 8.2 Welche Genehmigungen und Gutachten sind einzuholen? H) ............................................. 23 8.3 Welche lokalen Akteure sind einzubinden? H) ...................................................................... 23 8.4 Was können Kommunen vorbereitend tun? D) ..................................................................... 24 5 Hinweis zur Verwendung dieses Dokuments Das vorliegende Dokument „FAQ-Fragen und Antworten zur solaren Fernwärme“ wurde als Vorlage und Antwortenpool für FAQ-Bereiche z.B. auf Internetseiten oder Leitfäden zum Thema solare Fernwärme erstellt. Inhalte aus diesem Dokument können mit Verweis auf dieses Dokument als Quelle verwendet werden. Die gelisteten Antworten wurden von den Projektpartnern des Vorhabens SolnetPlus jeweils federführend erstellt und sind nachfolgend gekennzeichnet mit A) AGFW, S) Solites, H) HIR und D) Difu. 1 Technik Solarthermie 1.1 Welche Arten von Kollektoren sind für die Einbindungen in Wärmenetze geeignet? A) Im Anwendungsbereich der Fernwärme kommen bei Netztemperaturen bis rund 110 °C Flachkollektoren und Vakuumröhrenkollektoren zum Einsatz. Entscheidend sind hier die Vor- und Rücklauftemperaturen des Wärmenetzes an der Einbindestelle in der Periode von März bis Oktober. Die Systemtechnik der spezialisierten Anbieter ist auf den Einsatz in Wärmenetzen und für große Kollektorfelder im Megawattbereich optimiert. Zum Einsatz kommen oft Groß-Kollektormodule (Reduzierung von Anschlüssen und Montagezeiten) mit guter Effizienz bei höheren Betriebstemperaturen sowie mit einer optimierten Hydraulik für große Kollektorfelder (Reduzierung der Pumpenarbeit und Anschlussleitungen). Bei höheren Netztemperaturen sind konzentrierende Kollektoren wie z.B. Parabolrinnenkollektoren geeignet, die für solare Prozesswärme und Kraftwerksanwendungen im Bereich von 100 - 400 °C entwickelt wurden. 1.2 Ist eine Nachführung der Sonnenkollektoren sinnvoll? A) Ob sich eine ein- oder zweiachsige Nachführung von Kollektoren lohnt, ergibt sich aus einer Kosten-Nutzen-Analyse. Besonders zu beachten ist hier der Betriebs- und Instandhaltungsaufwand für bewegte Teile und Antriebe der Nachführung. Generell empfiehlt es sich, die Anlagen so einfach wie möglich zu halten. Konzentrierende Kollektoren (wie z.B. Parabolrinnenkollektoren) müssen zumindest einachsig dem Sonnenstand nachgeführt werden. 6 1.3 Welche Möglichkeiten zum Frostschutz bestehen? S) In den Wintermonaten ist die Anlagentechnik des Kollektorkreises durch entsprechende Frostschutzvorkehrungen vor einem Einfrieren zu schützen. In der Praxis haben sich hier zwei Verfahren vielfach bewährt. Passiver Frostschutz: Verwendung eines Wasser-Propylenglykol-Gemisches als Wärmeträgermedium im Kollektorkreis. Je nach Klima am Standort der Solaranlage liegt der Propylenglykolanteil meist zwischen 20 und 40 %. Hierbei werden speziell für die in einer Solaranlage auftretenden Randbedingungen optimierte Fertiggemische verwendet, die auch als Solarflüssigkeit bezeichnet werden. Diese Solarflüssigkeit enthält oft zusätzliche Korrosionshemmer. Durch einen einfachen pH-Wert-Test kann die Solarflüssigkeit überprüft und bei Bedarf ausgetauscht werden. Die Praxiserfahrung zeigt, dass dies nur selten und meist erst nach einigen Betriebsjahren erforderlich werden kann. Bei sehr hohen Temperaturbelastungen kann die Solarflüssigkeit altern. Einzelne Stagnationsfälle führen bei fachgerecht realisierten Solaranlagen zu keinen Schäden. Aktiver Frostschutz bei Wasser als Wärmeträgermedium: Sehr gut gedämmte Kollektorbauteile wie z.B. Vakuumröhrenkollektoren kühlen auch bei langen Kälteperioden nur wenig aus. Um ein Einfrieren insbesondere des Wassers in den Verbindungsleitungen zu vermeiden, wird das Wasser im gesamten Kollektorkreis abhängig von der Außentemperatur regelmäßig umgewälzt. Das in den Vakuumröhren auch bei geringer Solareinstrahlung leicht erwärmte Wasser erhöht die Wassertemperatur in den Verbindungsleitungen. Bei sehr tiefen Außentemperaturen muss dem Kollektorkreis Wärme aus dem Fernheizwasser zugeführt und somit der Kollektorkreis frostfrei gehalten werden. Bei hierauf optimierten Regelungen des Kollektorkreises kann der Wärmebedarf für die Frostfreihaltung auf rund 2 bis 4% des Jahreswärmeertrages beschränkt werden. 1.4 Nimmt die Effizienz der Sonnenkollektoren über die Betriebsdauer ab? S) Viele Messungen an Realanlagen und umfangreiche Forschungsprojekte zeigen, dass die Effizienz der Solarkollektoren auch nach vielen Betriebsjahren (20 Jahre) noch dem Neuprodukt entspricht. Sie sinkt nicht oder in seltenen Fällen leicht um insgesamt weniger als 10% [SpeedColl 2015, SpeedColl2 2020]. 7 Solarkollektoren müssen bei Normalverschmutzungen und Anstellwinkeln im Rahmen der deutschen Dachdeckerrichtlinien (z.B.18 Grad Neigung gegen die Horizontale und steiler) nicht gesondert gereinigt werden. Nur bei stark verschmutzenden Umweltbedingungen kann eine Reinigung der Glasflächen zu empfehlen sein. Referenzen: SpeedColl 2015: SpeedColl „Entwicklung beschleunigter Alterungsprüfverfahren für solarthermische Kollektoren und deren Komponenten“, 2011 bis 2015, www.speedcoll.de SpeedColl2 2020: „Gebrauchsdauerabschätzung für solarthermische Kollektoren und deren Komponenten“, 2016 bis 2020, www.speedcoll2.de 1.5 Sind Hybridkollektoren (Strom und Wärme) für die solare Fernwärme geeignet? A) Hybridkollektoren eignen sich z.B. zur gemeinsamen Strom- und Niedertemperatur-Wärmeerzeugung für eine Wärmepumpe in Neubauten oder energetisch sanierten Gebäuden. Sie sind nicht geeignet, um Wärme auf Vorlauftemperaturniveau von Fernwärmenetzen zu erzeugen. Die Wärme steht in der Regel mit max. 35° C zur Verfügung, da die Stromerzeugung von Hybridkollektoren bei steigenden Temperaturen abnimmt. 2 Wärmespeicher 2.1 Benötigen in Wärmenetze eingebundene Solarthermieanlagen Wärmespeicher? A) Die Erforderlichkeit eines Wärmespeichers hängt vorrangig von der Auslegung der Solarthermieanlage und dem Bedarf der Netzseite ab. Diese wird durch den „solaren Deckungsanteil“ beschrieben, d.h. dem Verhältnis zwischen solarem Jahresertrag und dem Jahreswärmebedarf im Wärmenetz bzw. am Einbindepunkt. Typische Auslegungsfälle sind: » Bei niedrigen solaren Deckungsanteilen bis ca. 5 % kann i.d.R. die Solarwärme direkt und zu jedem Zeitpunkt vom Wärmenetz aufgenommen werden. Dies kann ohne Wärmespeicher erfolgen. Vielfach hat sich jedoch ein kleinvolumiger Wärmespeicher bewährt, der als hydraulische Weiche fungiert und eine bessere Steuerung der Netzpumpe ermöglicht. » Bei solaren Deckungsanteilen von rund 15 %, deckt die Solarthermie i.d.R. den Sommerbedarf im Wärmenetz und es ist ein Mehrtages-Pufferspeicher erforderlich (Anhaltswert 0,2 m³/m² Bruttokollektorfläche). Ein solcher Pufferspeicher ist insbesondere 8 erforderlich, wenn die Leistung der Solarthermieanlage die Engpassleistung an der Einbindestelle übersteigt. » Bei höheren solaren Deckungsanteilen nimmt das je m² Bruttokollektorfläche notwendige Wärmespeichervolumen stetig zu. Bei einem solaren Deckungsanteil von beispielsweise 50 % ist ein Langzeitwärmespeicher / saisonaler Wärmespeicher erforderlich (Anhaltswert 2 m³/m² Bruttokollektorfläche). Das geeignete Speichervolumen hängt von einer Reihe von Parametern ab und sollte von Fachkundigen mittels eines Rechenprogramms ermittelt werden. Bei komplexeren Konfigurationen und höheren solaren Deckungsanteilen empfiehlt sich eine Anlagensimulation auf Basis von Stundenwerten für ein gesamtes Betriebsjahr. 2.2 Welche Möglichkeiten der saisonalen Wärmespeicherung bestehen? S) Oberirdische Stahlspeicher sind seit langer Zeit Stand der Technik. Diese werden meist täglich be- und entladen und haben dadurch einen hohen Wärmenutzen. Saisonale Wärmespeicher hingegen dienen zur saisonalen Speicherung von Wärme. Diese werden daher im Extremfall im Sommer beladen und im Winter entladen. Durch den geringen Wärmenutzen müssen diese saisonalen Wärmespeicher wesentlich günstiger gebaut werden können. Seit ca. 1995 wurden hierzu vier verschiedene Speicherbauarten entwickelt: » Behälter-Wärmespeicher sind größtenteils im Untergrund integrierte Stahlbetonbehälter, die mit Wasser gefüllt sind. In der Bautiefe von 5–15 m sollte möglichst kein Grundwasser vorhanden sein. Die Wärmespeicher können als begehbare Hügel in das zu versorgende Gebiet integriert werden. Die Be- und Entladung des Speichers erfolgt mit Hilfe einer Schichtbeladeeinrichtung. » Erdbecken-Wärmespeicher werden ebenfalls in 5–15 m Tiefe in den Untergrund eingegraben. Es wird ein künstlicher "Teich" angelegt, mit Speichermaterial gefüllt und mit einem Deckel verschlossen. Als Speichermaterial wird Wasser, Wasser-Kies-Gemisch oder Wasser-Erdreich-Gemisch genutzt. Erdbecken-Wärmespeicher sind eher flach und weisen eine große Oberfläche auf. Be- und Entladen wird der Speicher entweder direkt oder indirekt. Bei einem direkten Be- und Entladen wird das erwärmte Wasser direkt in den Speicher eingespeist und entnommen. Beim indirekten Be- und Entladen ist der Speicher mit wasserdichten Kunststoff-Rohrleitungen durchzogen, welche keinen Kontakt mit dem Speichermaterial haben. » Erdsonden-Wärmespeicher nutzen den Untergrund zur Wärmespeicherung. Die gewonnene Wärme wird den Erdsonden zugeführt, in denen Wasser als Wärmeträger zirkuliert. Das Wasser gibt in der Solarsaison die Solarwärme an den Untergrund ab. In der Heizphase wird den Erdsonden kühleres Wasser zugeführt. Die Erdsonden entziehen dem Untergrund so die gespeicherte Wärme. » Aquifer-Wärmespeicher nutzen ebenfalls den Untergrund. Sie verwenden unterirdische, wasserführende Gesteinsschichten zur Wärmespeicherung, die durch Brunnenbohrungen 9 erschlossen werden. Die Bohrtiefe hängt hierbei von der Tiefe des zu nutzenden Aquifers ab. Als Speichermaterial dient das angetroffene Grund- oder Tiefenwasser. Das nutzbare Wasservorkommen muss durch geeignete geologische Formationen eingeschlossen sein, da sonst die gespeicherte Wärme nicht wieder entnommen werden kann. Die Wirtschaftlichkeit eines saisonalen Wärmespeichers ist neben seiner Bauweise stark durch die Systemeinbindung bestimmt. Um diese wirtschaftlich zu optimieren, ist meist eine dynamische Systemsimulation zu empfehlen, die die Systemeinbindung der Solarthermieanlage und des Wärmespeichers in das Fernwärmesystem in Stundenwerten über ein ganzes Betriebsjahr betrachtet. Die für das Gesamtsystem (Erzeuger und Wärmenetz) wirtschaftlichste Lösung kann auch einen Wärmespeicher erfordern, der nicht die günstigsten Baukosten aller Speichervarianten aufweist. Quelle: www.saisonalspeicher.de 3 Freiflächenentwicklung 3.1 Sollten Kollektorfelder nicht eher auf Gebäudedächer? A) Zwei Voraussetzungen für günstige Wärmegestehungskosten und somit einen wirtschaftlichen Betrieb von solarthermischer Wärmeerzeugung sind zum einen eine ausreichende Anlagengröße (Skaleneffekt) und zum anderen eine einfache, zeitsparende und kostengünstige Montagetechnik (siehe FAQ 3.7). Alternativen sind hier die Montage von Kollektorfeldern auf Gebäudedächern oder die Nutzung von Freilandflächen. Obwohl in den letzten Jahren auch für die Dachintegration bzw. Dachmontage von Kollektoren hochwertige Systemtechnik entwickelt wurde, sind die Kosten für die Realisierung von Kollektorfeldern bei Freiflächenanlagen im Vergleich deutlich geringer. Die kosteneffiziente Realisierung großer Freiflächen-Kollektorfelder mit mehreren 10 000 m² Kollektorfläche ist daher für die künftige Entwicklung der solaren Fernwärme essenziell. Die zusätzliche Nutzung ausreichend großer und geeigneter Gebäudedächer stellt eine sinnvolle Ergänzung dar. Die Eignung der Gebäudedächer ist hierbei stets zu prüfen (z.B. ausreichende Dachstatik). Im Vergleich zu Strom erzeugenden Photovoltaikmodulen zeigen Solarthermiekollektoren eine wesentlich geringere Empfindlichkeit auf kleinere Verschattungen. Es empfiehlt sich entsprechend den lokalen Gegebenheiten die Flächennutzungsprioritäten von Solarthermie- und Photovoltaikanlagen in Bezug auf ortsnahe Frei- und Gebäudeflächen zu betrachten. 10 3.2 Wieviel Landfläche ist zur Aufstellung einer bestimmten Kollektorfläche erforderlich? S) Der jährliche Solarertrag ist am größten, wenn die Solarkollektoren nach Süden ausgerichtet sind und sich die einzelnen Kollektorreihen nicht oder nur in den strahlungsarmen Wintermonaten verschatten. Eine kleinere Abweichung von der Südausrichtung bringt kaum Ertragseinbußen. Je nach Systemeinbindung und dem gewünschten Deckungsanteil ergibt sich die beste Ausrichtung und Neigung (Aufstellwinkel gegen die Horizontale) der einzelnen Kollektoren. Diese bestimmen durch den Sonnenverlauf die Verschattung der Kollektorreihen. Hieraus ergibt sich der zu empfehlende Abstand und damit der Flächenbedarf. Die meisten auf Freiflächen realisierten Kollektorfelder weisen einen Flächenbedarf auf, der das 2-fache bis 2,3-fache der Bruttokollektorfläche beträgt. 3.3 Welche Flächen sind für eine Freiflächen-Solarthermieanlage nutzbar? H) Einschränkungen in der Flächennutzung ergeben sich aus den Planungsvorgaben auf Ebene des Landes, des Landkreises und der Kommune. Flächen, die anderen Nutzungen vorbehalten sind, sind dort festgeschrieben und begründet. Bestimmte Flächen werden darin generell ausgeschlossen wie z.B. Naturschutzgebiete während andere unter einem Abwägungserfordernis eingestuft werden wie z.B. Landschaftsschutzgebiete, um dort Solaranlagen zu errichten. Nach Vorgaben vieler regionaler Raumordnungsprogramme oder Landesentwicklungspläne sind in der Regel Flächen, die sich in räumlicher Nähe zu bestehenden Infrastrukturen wie z.B. Autobahnen, Bahnschienen oder Gewerbegebieten befinden bevorzugt zu nutzen. Eine kurze Anbindelänge zum Wärmenetz ist in diesen Bereichen in den meisten Fällen allerdings nicht der Fall und individuell abzugleichen. Konversionsflächen wie u.a. Kiesgruben oder alte Kohlelager sind meistens auch als Vorzugsflächen genannt und teils ohne langes Bebauungsplanverfahren umsetzbar. Falls in den Flächennutzungsplänen (Sonderbaufläche/Sondergebiet „Solarenergie“) oder in B-Plänen (Sondergebiet „Solaranlagen“ oder „Solarthermie“) schon Flächen festgeschrieben sind, können diese genutzt werden. Daneben empfiehlt sich die Nutzung von Flächen, deren festgeschriebene Nutzung mit der Solarthermie vereinbar ist wie » Gewerbegebiete: Zulässig gem. § 8 BauNVO » Industriegebiete: Zulässig gem. § 9 BauNVO 11 Auf Grund der hohen Bodenpreise in Gewerbe- oder Industriegebieten und fehlender aktiver Entwicklung von Flächen zur Energieerzeugung ist in der Regel ein B-Plan Verfahren nötig. Damit ein B-Plan Verfahren möglichst ohne unerwartete Verzögerungen durchlaufen werden kann, empfiehlt es sich, als Projektträger frühzeitig mit den entsprechenden Behörden in Kontakt zu treten und bestenfalls mit der Kommune gemeinsam auf Basis einer strukturierten Flächenanalyse eine Solarstrategie zu entwickeln. Die besonderen Belange der Solarthermie wie die siedlungsnahe Umsetzung werden gemeinsam mit der Kommune erörtert und im Rahmen der Abwägungsprozesse eingeordnet. Kommunen sollten im Rahmen kommunaler Klimaschutzbemühungen Flächen zur Energienutzung aktiv im Rahmen der Flächenplanung ausweisen. Eine strukturierte Flächenanalyse gemeinsam mit dem Projektträger der Solarthermie bietet einen guten Auftakt, um die Flächenplanung “von der Fläche zum Projekt” zu denken und klimaneutrale Versorgung mit Strom und Wärme und kommunale Flächenplanung aufeinander aufzubauen. 3.4 Wie weit kann die Freifläche vom Einbindepunkt entfernt sein? S) Jede Solarthermieanlage benötigt eine Vor- und eine Rücklaufleitung, mit der sie in die Wärmeversorgung eingebunden wird. Diese Leitungen verursachen Installationskosten sowie Wärme- und Temperaturverluste. Wird angenommen, dass der Wärmeverlust der Anschlussleitung maximal 2% eines durchschnittlichen Solarwärmeertrags betragen soll, ergibt sich ein Anhaltswert von maximal 1 km Anschlussleitungslänge je 10.000 m² Bruttokollektorfläche. 3.5 Welche Möglichkeiten zur mehrfachen Flächennutzung gibt es? H) Die Mehrfachnutzung wird oft auch als Multicodierung bezeichnet. Hierbei wird eine Fläche nicht nur zur Erzeugung solarer Wärme genutzt, sondern es besteht parallel noch mindestens eine weitere Nutzungsart. Die Art der Mehrfachnutzung lässt sich wie folgt unterscheiden: » Soziale Multicodierung: Neben der energetischen Nutzung wird auch ein sozialer Mehrwert auf oder angrenzend zu der Fläche geschaffen. Die Ausgestaltung kann dabei je nach lokalen Anforderungen oder Wünschen sehr unterschiedlich ausfallen. In dicht bebauten Bereichen kann z.B. ein angrenzender Bürgerpark zur Naherholung angelegt werden, der neben der Fläche Freiraum bietet. In Solarparks in Randbereichen der Stadt können Natur- 12 oder Energielehrpfade mit Aussichtsplattformen kombiniert werden, um den Park für Ausflüge oder Lehrfahrten attraktiv zu gestalten. » Ökologische Multicodierung: Bei der ökologischen Multicodierung liegt der Fokus darauf die Fläche rund um und ggf. unter den Modulen möglichst wertvoll für Flora und Fauna zu gestalten. Was genau eine wertvolle Gestaltung ausmacht, ist an die Gegebenheiten und bestehenden Lebensräume vor Ort anzupassen möglichst in gemeinsamer Abstimmung mit den lokalen Behörden zu entwickeln. Kleinteilige Habitate lassen sich u.a. durch Totholzhaufen oder sandige Böschungen gestalten. Durch die Anlage von Tümpeln oder Teichen können Feuchtbiotope geschaffen werden. Hier gilt es die lokalen Anforderungen und Möglichkeiten früh in die Planung einzubinden und die Planung an den gewünschten ökologischen Zielzustand der Flächen auszurichten. » Landwirtschaftliche Multicodierung: Ein zusätzlicher landwirtschaftlicher Nutzen kann z.B. durch die Schafsbeweidung der Flächen zwischen den Modulen erreicht werden. Die natürliche Art der Mahd bringt viele Vorteile mit sich. Durch die im Vergleich zur maschinellen Bearbeitung der Flächen eher unregelmäßige Mahd, bleibt das Blütenangebot durchgehend erhalten. Über das Fell, die Klauen und den Kot verteilen die Schafe die Diasporen der Pflanzen. Damit sich Schafe und Lämmer nicht den Modultischen verletzen können, ist schon in der Planungsphase darauf zu achten, dass keine scharfen Kanten gelassen werden. Wird ein ausreichender Abstand zwischen den Modulreihen geplant (ca. 6m) können die Flächen zwischen den Reihen auch weiterhin mit großen Maschinen bewirtschaftet werden. Bei der Verwendung kleinerer Maschinen kann der Abstand entsprechend verringert werden. Die Arten der Multicodierung sind in der Umsetzung keineswegs strikt voneinander getrennt oder schließen sich gegenseitig aus, sondern sollten immer in bestmöglicher Kombination miteinander gedacht und umgesetzt werden. 3.6 Kann die Fläche mehrfach zur Wärmeerzeugung genutzt werden (z.B. zusätzlich für ein Wärmepumpen-Sondenfeld)? A) Sowohl Solarthermiefelder als auch oberflächennahe Geothermie-Sondenfelder für Wärmepumpen sollten bevorzugt ortsnah zum Wärmenetz liegen. Generell bietet eine solche Doppeltnutzung der Freifläche eine interessante Synergie bei kombinierter Nutzung von Solarthermie und Wärmepumpen für die Wärmeerzeugung. Größere, vorwiegend zum Heizen genutzte Erdwärmesondenfelder sollten über die Sommermonate regeneriert werden, was z.B. durch eine Solarthermieanlage erfolgen kann. Das Konzept wurde in Deutschland bisher noch nicht realisiert und erprobt. 3.7 Wie werden Kollektorfelder auf Freiflächen errichtet? A) Für die Errichtung von großen Kollektorfeldern sind geeignete Unterkonstruktionen (i.d.R. Stahl oder Aluminium) und Montagesysteme zur Aufnahme von Kollektor-Großmodulen 13 marktverfügbar. Eine Fundamentierung im Boden dient im Wesentlichen zur Aufnahme von Wind- und Schneelasten auf dem Kollektorfeld und wird meist als Rammfundamentierung (eingerammte Stahlprofil-Stützen) realisiert. Lässt die Bodenbeschaffenheit keine Rammfundamentierung zu (weicher oder felsiger Boden, Deponieflächen), kann die Fundamentierung über vorgefertigte Betonfundamente erfolgen. Die Montage ist in beiden Fällen reversibel, d.h. die Bodenbeschaffenheit kann zu einem späteren Zeitpunkt wieder vollständig hergestellt werden. Es findet keine bzw. im Fall von Betonfundamenten nur eine geringfügige Bodenversiegelung statt. 3.8 Wie gehe ich bei der Suche und Entwicklung von Freiflächen vor? H) Im ersten Schritt erfolgt eine Bestandsaufnahme der planerischen Vorgaben auf Landes- und Regionalebene und ggf. bestehender Voruntersuchungen. Auf kommunaler Ebene ist der Flächennutzungsplan zu betrachten. Auf Basis der Vorgaben sind die entsprechenden Layer und Daten (häufig öffentlich verfügbar, ggf. zusätzliche Daten bei Kommune erfragen) möglichst in einem Geoinformationssystem darzustellen und mit den Netzeinschränkungen und -anforderungen zu verschneiden. Über die Vorgaben der Ausschluss-, Abwägungs- und Positivbereiche auf Basis der Bestandsaufnahme kann eine Priorisierung in unterschiedliche Bereiche erfolgen, um darzustellen wo die raumplanerischen Widerstände am geringsten sind und möglichst Positivbereiche (i.d.R. in der Nähe von bestehenden räumlich relevanten Infrastrukturen) durch die Anlagenplanung belegt werden. In Ausschlussbereichen ist die Umsetzung nach den Vorgaben der Flächenplanung ausgeschlossen und kann nicht weiterverfolgt werden. In Bereichen, die einem Abwägungskriterium unterliegen, ist die Umsetzung nicht ausgeschlossen, allerdings liegen in diesem Bereich andere Belange vor wie z.B. Landschaftsschutzbereiche. Diese führen nicht zum Ausschluss, sollten aber aufgenommen werden, um abzubilden, dass in diesen Bereichen keine priorisierte Umsetzung erfolgen sollte. Über die Positivbereiche soll eben dieser Bereich der priorisierten Umsetzungen erfasst werden. Die Ergebnisse sind im Dialog mit dem Stadtplanungsamt bezüglich der Stadtentwicklung zu diskutieren. Zusätzlich sollte der Austausch mit den lokalen Naturschutzverbänden gesucht werden, um das lokale Wissen bezüglich besonders schützenswerter Bereiche in die Untersuchung aufzunehmen. Technisch-wirtschaftliche Vorgaben zur Netzeinbindung und die möglichen Entfernungen zum nächsten Einspeisepunkt bilden die Grundlage zur Machbarkeit der Umsetzung. Am Ende steht die Akquisefähigkeit der Fläche. Gibt es kein Interesse oder 14 keine Möglichkeit seitens der Flächenbesitzenden, die Fläche zu verkaufen oder zu verpachten, muss auf Flächen mit geringerer Priorisierung zurückgegriffen werden. 4 Umweltbelange 4.1 Wie ist eine naturnahe Gestaltung von Freiflächenanlagen möglich? H) Zur ökologischen Gestaltung von Freiflächenanlagen gibt es inzwischen mehrere erprobte Mittel. Der Einsatz von heimischem Saatgut (Gräser, Kräuter, Wildblumen) auf der Fläche der Anlage fördert beispielsweise nicht nur Pflanzen- sondern auch Insektenvielfalt, bietet zudem Nahrungsquellen für weitere Tiere und ermöglicht die Vernetzung von Biotopen. Das Einbeziehen von Einzelelementen wie Totholz, Steinhaufen oder Ähnlichem kreiert wichtige (Teil-)Lebensräume, die für verschiedene Tierarten für Nahrung, Fortpflanzung, Unterschlupf etc. von Bedeutung sind. Hierbei ist auf die Verwendung von ortsheimischen Materialien zu achten. Bei der Wahl von Modulhöhe und –abstand sollten ökologische Aspekte wie Beschattung von Pflanzen oder ggf. Zugang für beweidende Schafe mitgedacht werden. Auch die durch den Bau entstehenden Unebenheiten des Geländes (Reifenspuren, Aushebungen etc.) könnten genutzt werden für Pionierstadien, in denen sich Wasser ansammeln kann. Kleine Gewässerstrukturen dieser Art sind allgemein ein wichtiger Lebensraum für Amphibien und Reptilien und die Inklusion solcher Teilbiotope innerhalb von Freiflächenanlagen kann somit potenziell den ökologischen Wert der Fläche heben. Voraussetzung hierfür ist allerdings, dass diese an Lebensräume dieser Tierarten angeschlossen sind. Sofern die Anlage von naturnahen Biotopen umgeben ist, ist es sinnvoll die Freiflächenanlage mit entsprechenden Trittsteinbiotopen an diese anzuschließen z.B. in Form von Hecken, Gräben oder Wiesen. 4.2 Wie integrieren sich Anlagen gut in die Landschaft? H) Die Gestaltung der Fläche kann dazu beitragen, die Anlage gut in die Landschaft zu integrieren. Eine Einhegung um das Gelände kann den optischen Effekt zusätzlich verringern. Hecken können zusätzlich als Nahrungshabitat oder Nistplatz genutzt werden. Ziel ist es, die Anlage in die vorhandene Struktur einzubinden. Besonders in den siedlungsnahen Bereichen sind bauliche Strukturen bereits vorhanden. 15 5 Netzeinbindung 5.1 Bis zu welchen Netztemperaturen kann Solarthermie eingesetzt werden? A) Bis rund 110 °C ist der Einsatz von „Standard-Technik“ sinnvoll möglich. Entscheidend sind hier die Vor- und Rücklauftemperaturen des Wärmenetzes an der Einbindestelle in der Periode von März bis Oktober. „Standard-Technik“ umschreibt hierbei die marktverfügbare Flachkollektor- und Vakuumröhren-Systemtechnik für große Kollektorfelder, die speziell für die Einbindung in Wärmenetze entwickelt wurde. Bei höheren Netztemperaturen sind konzentrierende Kollektoren wie z.B. Parabolrinnenkollektoren geeignet (siehe FAQ 1.1). 5.2 Warum wirken sich niedrige Vor- und Rücklauftemperaturen günstig aus? S) Die (reale) Wärmeleistung eines Solarthermiekollektors ist umso höher, je höher die solare Einstrahlung und je geringer seine Betriebstemperatur ist. Hierbei wirken mehrere physikalische Effekte zusammen. Leicht nachvollziehbar ist dies, wenn folgender Vergleich betrachtet wird: ist die Netzrücklauftemperatur, die der Solarkollektor erwärmen kann, mit z.B. 40 °C gering, ist dies auch bei geringer solarer Einstrahlung möglich. Muss der Solarkollektor z.B. 90 °C warmes Wasser erwärmen, benötigt er eine wesentlich höhere Leistung und damit hohe solare Einstrahlung. In diesem Fall kann an strahlungsärmeren Tagen kein solarer Wärmeertrag erzielt werden. Bei hohen Temperaturen ist eine höhere Wärmeleistung notwendig, da die Wärmeverluste eines Solarthermiekollektors gegenüber der Umgebung bei hohen Betriebstemperaturen höher sind als bei tieferen. Vakuumröhrenkollektoren zeigen hierbei eine geringere Empfindlichkeit als Flachkollektoren. Kann der Solarkollektor den Netzrücklauf um z.B. 5 K vorwärmen, ist daher ein höherer jährlicher Solarertrag erzielbar als bei einer notwendigen Erwärmung auf Netzvorlauftemperatur. Diese hydraulischen Einbindevarianten können den erzielbaren jährlichen Solarwärmeertrag maßgebend beeinflussen (mehrere 10%). Wie viel mehr Ertrag erhalte ich, wenn ich meine Rücklauftemperatur um 1 Kelvin senke? Dieser Wert kann je nach hydraulischer Einbindung, Regelungskonzept und Kollektorprodukt deutlich variieren. Bei gängigen Anlagenkonzepten kann grob von einem Mehrertrag von 3 bis 5 kWh/a je m² Bruttokollektorfläche ausgegangen werden, wenn die Rücklauftemperatur zum Kollektor um 1 Kelvin abgesenkt wird und die Solarthermieanlage im Vorwärmbetrieb arbeiten kann. 16 5.3 Ist eine stabile Versorgung bei fluktuierender Einstrahlung möglich? S) Eine Solarthermieanlage kann nur dann Wärme erzeugen, wenn die Sonne scheint und die Wärmeerzeugung ist umso höher, je stärker die solare Einstrahlung ist. Durch die Einbindung eines Wärmespeichers kann die solar erzeugte Wärme zwischengespeichert werden und entsprechend den Anfordernissen der Versorgung in das Wärmenetz abgegeben werden. Bei einer dementsprechenden Dimensionierung und Systemeinbindung von Solarkollektorfeld und Wärmespeicher ist eine stabile Versorgung sichergestellt. 5.4 Wie wirkt sich die fluktuierende Leistung auf das Wärmenetz aus? S) Eine Solarthermieanlage kann nur die Leistung weitergeben, die durch die Sonne eingestrahlt wird. Die Wärmekapazität des Kollektorfeldes mindert dabei schon einen Teil der Dynamik. Ist ein Wärmespeicher zwischen dem Kollektorfeld und der Einbindestelle in das Wärmenetz integriert, kann dieser je nach seiner Größe die fluktuierende Leistung schwächen oder sogar glätten. Bei einer direkten Einbindung der Solarthermieanlage in ein Wärmenetz („dezentral“) ist nicht nur die variierende Leistung zu betrachten, sondern auch die ggf. vorhandene Notwendigkeit, die Einspeisetemperatur im engen Rahmen konstant zu halten. Hierzu wurden mehrere Konzepte für eine Einspeisestation entwickelt und in einer Piloteinbindung im Netz der Stadtwerke Düsseldorf untersucht [Forschungsvorhaben SWD.SOL 2018, SWD.SOL2 2022]. Es zeigte sich, dass eine detailliert auf die Einbindesituation angepasste Parametrierung der Regelparameter die Einspeisung der Solarwärme im engen Rahmen der Netzerfordernisse halten kann. Bei einer Einbindung der Solarthermieanlage auf Seite der Wärmeerzeugung („zentral“) können fluktuierende Leistungen und erzeugte Solar-Vorlauftemperaturen meist einfach innerhalb des Erzeugerparks passend für das Wärmenetz ausgeregelt werden. Referenzen: SWD.SOL 2018: SWD.SOL – Dezentrale Einbindung von Wärme aus erneuerbaren Energien in das KWK-Fernwärmesystem der Stadtwerke Düsseldorf AG SWD.SOL2 2022: Evaluierung der dezentralen Einbindung von solarer Wärme in das KWK-Fernwärmesystem der Stadtwerke Düsseldorf AG 17 5.5 Welche Möglichkeiten der Einbindung gibt es bei größeren FW-Netzen? S) Unabhängig von der Größe des Fernwärmenetzes können Solarthermieanlagen auf vielfältige Weise in Wärmenetze eingebunden werden. Folgende Einbindearten werden grundsätzlich unterschieden: » Zentrale Einbindung: Die Solarthermieanlage wird auf der Seite der Wärmeerzeugung in eine Heizzentrale eingebunden. » Dezentrale Einbindung: Die Solarthermieanlage wird in einen Strang des Wärmenetzes eingebunden, entfernt von zentralen Wärmeerzeugern. Die Einbindung kann mit oder ohne Wärmespeicher an der Einbindestelle erfolgen. Weiter wird unterschieden, wie die Solarthermieanlage in den Rücklauf-Vorlauf-Kreislauf eingebunden ist und welche Rolle sie im Zusammenhang mehrerer Wärmerzeuger spielt: » Rücklauf-Vorlauf-Einbindung: die Solarthermieanlage erhält die Rücklauftemperatur des Wärmenetzes und erwärmt diese auf die Vorlauftemperatur. Die Regelung der Solarthermieanlage muss hierbei alle Dynamiken der solaren Einstrahlung und des Massenstroms auf der Wärmenetzseite ausregeln. » Rücklauf-Rücklauf-Einbindung: die Solarthermieanlage erhält die Rücklauftemperatur des Wärmenetzes und erhöht diese um einen Mindestwert, z.B. um mindestens 5 K. Dieser vorgewärmte Rücklauf wird durch einen weiteren Wärmeerzeuger weiter erwärmt oder in einem Wärmespeicher gespeichert und zu einem späteren Zeitpunkt durch die Solarthermieanlage weiter erwärmt. Diese Einbindung führt bei sonst gleichen Randbedingungen zu einem höheren Solarwärmeertrag als die Rücklauf-Vorlauf-Einbindung. » Manche der realisierten Solarthermieanlagen können die Einbindeart je nach Strahlungsangebot (der Sonne) wechseln, wie z.B. die Solarthermieanlage in Senftenberg. 5.6 Mit welchen weiteren Wärmeerzeugern lässt sich Solarthermie kombinieren? A) Solarthermie trägt i.d.R. zur Deckung der sommerlichen Grundlast im Wärmenetz bei bzw. deckt diese bei ausreichender Dimensionierung vollständig. Sie liefert weiter Beiträge zur Grundlast in den Übergangszeiten und an sonnigen Wintertagen. Betriebliche und/oder wirtschaftliche Vorteile ergeben sich insbesondere bei der Kombination mit Wärmeerzeugern, bei denen ein sommerlicher Minderbetrieb Betriebskosten und / oder Emissionen reduziert (Biomasse, Wärmepumpen, BHKW, fossile Heizwerke) bzw. bei denen der sommerliche Teillastbetrieb ineffizient oder nicht möglich ist (Biomasse). Ebenso ist eine 18 Kombination mit anderen Grundlasterzeugern möglich, wenn deren Leistung den sommerlichen Bedarf nur anteilig deckt. Durch große Fernwärmespeicher wird die Solarthermie mit höheren Deckungsanteilen und über längere Zeiträume grund- und mittellastfähig. Der kombinierte Betrieb mit anderen Grundlasterzeugern wird hierdurch flexibilisiert und möglich. Eine Gesamtoptimierung der Wärmeerzeugung erfolgt über die Jahresdauerlinie und mit speziellen Berechnungsprogrammen, welche für die Berechnung der Solarerträge und die Abbildung der Speicherkapazitäten geeignet sind. Ggf. sind netzhydraulische Betrachtungen von Netzabschnitten erforderlich. 6 Auslegung und Ertrag 6.1 Welchen Wärmeertrag und welche Leistung erbringt eine Solarthermieanlage? S) Die Wärmeleistung und der Wärmeertrag einer Solarthermieanlage hängt vom Produkt, der solaren Einstrahlung, der Einbindeart und von den Betriebstemperaturen ab. Letztere haben einen großen Einfluss, da der Wirkungsgrad von Solarthermieanlagen mit steigenden Betriebstemperaturen sinkt. Daher können keine festen, technologiespezifischen Werte für den Wärmeertrag angegeben werden. Es gilt, dass mit zunehmendem solaren Deckungsanteil am jährlichen Gesamtwärmebedarf die Betriebszeiten zunehmen, an denen die Solarthermieanlage hohe Betriebstemperaturen erreicht. Daher sinkt bei sonst gleichen Randbedingungen der jährliche Wärmeertrag je Quadratmeter Kollektorfläche mit zunehmendem solaren Deckungsanteil. Die Abhängigkeit des Wärmeertrages von mehreren Parametern erfordert eine Auslegung der Solarthermieanlage durch Berechnungs- oder Simulationsprogramme. Diese geben den zu erwartenden jährlichen solaren Wärmeertrag, den solaren Deckungsanteil etc. aus. Für Solarthermieanlagen mit jährlichen Deckungsanteilen bis 15 %, durchschnittlicher solarer Einstrahlung und sommerlichen Betriebstemperaturen im Wärmenetz von rund 55 °C Rücklauf und rund 80 °C Vorlauf ergeben sich jährliche, nutzbare Wärmeerträge zwischen rund 430 und 500 kWh je m² Bruttokollektorfläche und Jahr, je nach Kollektorprodukt und Standort. 19 6.2 Welche solaren Deckungsanteile lassen sich erreichen? S) Solarthermieanlagen können durch die Variation der Kollektorfeldgröße und des Wärmespeichervolumens auf eine große Bandbreite von solaren Deckungsanteilen am jährlichen Gesamtwärmebedarf ausgelegt werden. Solaranlagen, die auf Vorwärmung ausgelegt sind, erreichen Deckungsanteile von 3 bis 5%. Bei einer Vergrößerung der Kollektorfläche und der Einbindung eines Pufferspeichers kann die Solarthermieanlage über die Sommermonate die Wärmeerzeugung vollständig übernehmen. Je nach Jahreslastverlauf werden solare Deckungsanteile um die 15% erreicht. Solaranlagen mit saisonalem Wärmespeicher können Deckungsanteile bis nahezu 100% erreichen. Der Investitions- und Installationsaufwand steigt mit zunehmendem solaren Deckungsanteil überproportional an. Die größten bis jetzt in Europa realisierten solaren Deckungsanteile für Anlagen in Wärmenetzen liegen bei 50 bis 70 % des jährlichen Gesamtwärmebedarfs. 6.3 Mit welchem Wärmeertrag je Hektar Landfläche kann man rechnen? S) Wie in FAQ 6.1 und 6.2 beschrieben, hängt der Wärmeertrag einer Solarthermieanlage stark von den Betriebsbedingungen der Anlage ab, insbesondere von den Betriebstemperaturen, der solaren Einstrahlung und dem anvisierten solaren Deckungsanteil. Für Solaranlagen mit jährlichen Deckungsanteilen von 5 bis 15%, durchschnittlicher solarer Einstrahlung und sommerlichen Betriebstemperaturen im Wärmenetz von rund 55 °C Rücklauf und rund 80 °C Vorlauf ergeben sich jährliche, nutzbare Wärmeerträge zwischen rund 2 und 2,5 GWh je Hektar Bodenfläche und Jahr, je nach Kollektorprodukt und Standort. 6.4 Wie funktionieren Verfahren zu Ertragsgarantie? A) Ertragsgarantien werden i.d.R. zwischen dem Anlageneigner und dem Lieferunternehmen im Rahmen der Auftragsvergabe vereinbart. Sie sichern dem Anlageneigner eine vereinbarte Mindest-Leistungsfähigkeit der Solarthermieanlage zu bzw. verpflichten das Lieferunternehmen zu Ersatzzahlungen bei Nichterreichen der vereinbarten Leistungsfähigkeit. In der Praxis finden zwei Verfahren Anwendung. Garantie auf den eingespeisten solaren Nutzwärmeertrag: Das Lieferunternehmen garantiert einen absoluten jährlichen Ertrag, der sich aus den der Anlagenausschreibung zugrundeliegenden Angaben (z.B. Referenzwetterdatensatz und Lastdaten) abzüglich eines Sicherheitsabschlags ergibt. Der reale Ertrag wird dann an vereinbarter Stelle und über einen 20 vereinbarten Zeitraum (z.B. fünf Jahreszeiträume ab Inbetriebnahme) gemessen und dem garantierten Ertrag gegenübergestellt. Dieses Verfahren lässt i.d.R. Schwankungen in der jährlichen solaren Einstrahlung unberücksichtigt. Diese können bei über plusminus 10 % liegen. Garantie nach Leistungskurve: Bei diesem Verfahren basiert die Ertragsgarantie auf einer garantierten Leistungskurve für das gesamte Kollektorfeld einschließlich der Anbindeleitung, interner Verrohrung und Wärmeübertrager. Sowohl die Ertragsgarantie als auch zwei Verfahren zu deren Überprüfung sind in einer internationalen Norm ISO 24194:2022 beschrieben. Die Verfahren basieren entweder auf mehreren Kurzzeitmessungen von je einer Stunde oder mehrere Messungen über je einen Tag. Die aufgeführten Garantiebedingungen gelten ab der Inbetriebnahme der Solarthermieanlage für einen vereinbarten Zeitraum (z.B. ebenfalls fünf Jahre ab Inbetriebnahme). Mit dem Verfahren nach ISO 24194 kann die Garantie einmal jährlich überprüft werden. Hinweis: AGFW FW 316 - Empfehlungen für die Ausschreibung von Freiflächen-Solarthermieanlagen zur Einbindung in Wärmenetze in Kombination mit der Abgabe solarer Ertragsgarantien, AGFW, 2022 7 Wirtschaftlichkeit 7.1 Wie hoch sind die Investitionskosten für Solarthermieanlagen? A) Die Investitionskosten für eine Solarthermieanlage zur Einbindung in ein Wärmenetz umfassen das Kollektorfeld, die Anlagentechnik der Solarthermieanlage, den Wärmespeicher, die Anlagentechnik zur Anbindung an das Wärmenetz, die elektrische Anbindung und MSR-Technik, Planungs- und Baukosten. Die Investitionskosten sind stark von der Anlagengröße und den projektspezifischen Randbedingungen abhängig (z.B. Erforderlichkeit eines Wärmespeichers oder einer Technikzentrale) und sollten durch ein Indikativangebot bei Anbietern angefragt werden. Anhaltswerte für die Gesamtinvestition (Stand 2020) bewegen sich je nach verwendeter Technik und Anlagengröße zwischen 250 und 480 €/m² Bruttokollektorfläche [Thamling 2020] Die Berücksichtigung der Landkosten ist in FAQ 7.4 erläutert. Die spezifischen Investitionskosten sind bei in Wärmenetzen eingebundenen Großanlagen wesentlich geringer als bei Solarthermieanlagen auf Einzelgebäuden. 21 Referenz: Thamling 2020: Thamling et al., Perspektive der Fernwärme, Prognos AG und HIC Hamburg Institut Consulting GmbH, im Auftrag des AGFW | Der Energieeffizienzverband für Wärme, Kälte und KWK e. V., 2020] 7.2 Wie hoch sind die Kosten für Betrieb und Instandhaltung einer Solarthermieanlage? A) Die Wartung und Instandhaltung umfassen Sichtprüfungen der Anlage, die Prüfung der Wärmeträgerflüssigkeit (selten), die Pflege des Geländes sowie die Wartung und Instandhaltung der Anlagentechnik der Heizzentrale im gängigen Umfang. Die Wartungs- und Instandhaltungskosten können mit 0,7 % der Gesamtinvestition als jährliche Kosten angesetzt werden. Für die anfallenden Stromkosten kann der Strombedarf der Gesamtanlage mit rund 1 bis 1,5 % der erzeugten Wärmemenge angenommen werden. Die spezifischen Stromkosten sollten entsprechend der unternehmensspezifischen Bezugs- oder Eigenerzeugungskonditionen angesetzt werden. Als weitere jährliche Kosten sind Kosten für Versicherungen und ggf. Landpacht (siehe Link zu FAQ 7.4) sowie der Kapitaldienst für die Investition zu berücksichtigen. Quelle: Praxisleitfaden Solarthermie, März 2021, AGFW 7.3 Welche Wärmegestehungskosten werden erreicht? A) Die Gestehungskosten für die Solarwärme berechnen sich aus den Investitionskosten (siehe FAQ 7.1), den jährlichen Kosten (siehe FAQ 7.2) und dem Jahresertrag (siehe FAQ 6.1) unter der Annahme einer Lebensdauer von 25 Jahren für die Solarthermieanlage und eines unternehmensspezifischen kalkulatorischen Zinssatzes. Es können Wärmegestehungskosten von 55–60 €/MWh vor Förderung erzielt werden (5 % kalkulatorischer Zinssatz, ohne Kosten für die Landfläche, entspr. Berechnungsbeispiel im AGFW-Praxisleitfaden Solarthermie). Die Wärmegestehungskosten sind über die Lebensdauer der Solarthermieanlage weitgehend konstant, da sich ein hoher Anteil von der anfänglichen Investition ableitet. Die Solarthermie bietet somit ein geringes Investitionsrisiko und verringert die Abhängigkeit von Brennstoffkosten und -verfügbarkeiten. Quelle: Praxisleitfaden Solarthermie, März 2021, AGFW 22 7.4 Wie werden die Kosten für die Landfläche berücksichtigt H) Die Kosten für die Pacht oder den Kauf von Flächen können nicht pauschal beurteilt werden, sondern sind stark von den lokalen Bodenpreisen abhängig. Indikatoren für weniger hohe Preise können u.a. geringe Bodenzahlen sein, die auf geringere landwirtschaftliche Erträge der Flächen hinweisen. Auch Bereiche in Wasserschutzgebieten, die Auflagen für die Bewirtschaftung des Bodens wie z.B. den Düngemitteleinsatz enthalten, können sich preislich vorteilhaft auswirken. Da die Flächen zur solarthermischen Nutzung in starker Konkurrenz zur Photovoltaiknutzung stehen, sind die Kosten auch immer davon abhängig wie attraktiv eine Fläche für die Photovoltaiknutzung ist. Sind PV-Flächen nach EEG förderfähig wie z.B. entlang von Autobahnen oder Schienenwegen können meist höhere Pachtpreise gezahlt werden, da die Vergütung des erzeugten Stroms gesichert ist. Auf diesen Flächen können die Pachtpreise auf Grund der besonderen wirtschaftlichen Eignung höher ausfallen als in Bereichen, die nicht nach EEG förderfähig sind. Wenn der Pachtpreis für den/die Besitzer*in das alleinige Entscheidungskriterium ist, muss der Pachtpreis für die solarthermische Nutzung entsprechend höher ausfallen als bei einer geförderten Photovoltaiknutzung. 7.5 Welche Fördermöglichkeiten für Solarthermieanlagen gibt es? A) Es gibt auf Bundes- und Landesebene eine Vielzahl von Förderprogrammen, die zum Bau von Solarthermieanlagen in Verbindung mit Wärmenetzen in Anspruch genommen werden können. Einige dieser Förderprogramme zielen direkt auf die Nutzung und Anwendung solarthermischer Anlagen im Bereich der Fernwärme (z.B. Bundesförderprogramm für effiziente Wärmenetze, BEW). Andere Förderprogramme zielen auf Wärmesysteme ab, bei denen die Solarthermieanlage als ein Bestandteil einer systemischen Förderung bezuschusst werden kann. Dies betrifft vor allem die Förderung über das Kraft-Wärme-Kopplungsgesetz (KWKG). Die Programme und ihre jeweiligen Konditionen unterliegen fortlaufenden Änderungen und sind über einschlägige Förderportale gelistet. Genannt sind hier mit dem jeweiligen Verweis: » Bundesförderung Effiziente Wärmenetze (BEW): Internetseite des BAFA » Bonus für innovative erneuerbare Wärme sowie Ausschreibungen der innovativen Kraft-Wärme-Kopplung (KWKG 2020, KWKAusV). 23 8 Projektentwicklung 8.1 Welche Phasen sind bei der Projektentwicklung zu berücksichtigen? H) Die Projektentwicklung solarthermischer Freiflächenanlagen gliedert sich i.d.R. in folgende Phasen: Flächenanalyse und Flächenakquise (ca. 4-8 Monate) Genehmigungsphase (ca. 15-24 Monate) a. Planungsanstoß durch z.B. Vorhabensträger b. Frühzeitige Behördenbeteiligung c. Aufstellungsbeschluss (förmliche Einleitung des Verfahrens) d. Frühzeitige Öffentlichkeitsbeteiligung (Beteiligung auf Basis eines Vorentwurfs) e. Abstimmung mit Behörden und Trägern öffentlicher Belange f. Öffentliche Auslegung des Planentwurfs (ein Monat) g. Feststellung des Bebauungsplans h. Bauantrag und Erteilung Baugenehmigung Bau und Inbetriebnahme (ca. 5-6 Monate) 8.2 Welche Genehmigungen und Gutachten sind einzuholen? H) Je nach örtlicher Situation können folgende Gutachten gefordert werden: » Blendgutachten (i.d.R. wenn Projekt in Straßennähe) » Statikgutachten / Baugrundgutachten » Versickerungsgutachten » Umweltverträglichkeit bzw. Umweltuntersuchungen unterschiedlicher Fachrichtungen (z.B. Prüfung der Verwendung von Glykol) » Faunistische Betrachtung und Biotopkartierung (Erfassung im Planungsgebiet, Auswertung der Ermittlungsergebnisse, Beratung Ausgleichsmaßnahme oder ökologische Aufwertung) » Weitere Gutachten im Einzelfall je nach lokalen Anforderungen im Plangebiet 8.3 Welche lokalen Akteure sind einzubinden? H) Als wichtige lokale Akteur*innen neben den Behörden sind im Allgemeinen einzubinden: 24 » Im Rahmen der Initiation / Projektidee: Akteure innerhalb der Kommunalverwaltung und Kommunalpolitik (Umwelt-, Klimaschutz-, Stadtplanungs- und Bauamt, Beschaffungs- und Wirtschaftsdezernat, (Ober-)Bürgermeister*in, Kämmerer/Kämmerin, Gemeinderats-mitglieder und -fraktionen etc.) » (lokale) Naturschutzverbände im Rahmen der frühzeitigen informellen Flächenanalyse » Landwirtschaftsverbände im Rahmen der Flächenakquise » Lokale Klimagruppen im Rahmen der öffentlichen Diskussion und Notwendigkeit von EE-Flächen in der Kommune » Stadtwerke, kommunale Eigenbetriebe oder lokale / regionale Bürgerenergiegenos-senschaften als Errichter und / oder Betreiber der Anlage » Lokale Wärmenetzbetriebe wenn Betriebskonzepte diskutiert werden » Energieagenturen, um Erfahrungen aus dem Land oder dem Landkreis / der Region zu nutzen » Ankerkunden (Wärmesenken) » (kommunale) Wohnungsbaugesellschaften, Gebäudeeigentümer*innen, Industrie- und Gewerbebetriebe / -gebiete » Im Rahmen der Projektumsetzung: weitere lokale Akteure wie z. B. Handwerksbetriebe, Banken, Hochschulen, Institute, Umweltvereine, Klima-Initiativen etc. 8.4 Was können Kommunen vorbereitend tun? D) Die Durchführung einer frühzeitigen Flächenanalyse vor der konkreten Projektplanung, z.B. im Zuge der Erstellung eines kommunalen Wärmeplans, unterstützt und beschleunigt den Entscheidungsprozess. Folgenden Schritte können vorbereitend erfolgen: » Betrachtung des Flächennutzungsplans sowie der planerischen Vorgaben auf Landes- und Regionalebene, mit dem Ziel auf Basis dieser Bestandsaufnahme eine Priorisierung potenzieller Flächen für erneuerbare Energiegewinnung vorzunehmen (siehe FAQ 3.8). » Prüfung auf für die Wärmeplanung und insbesondere für die Solarthermie relevante Aspekte bereits erstellter Karten und Darstellungen, z.B. für die Stadtplanung oder für Klimaschutzkonzepte » Je nach Kommunentyp und -größe bietet es sich an, frühzeitig Kontakt zu benachbarten Kommunen aufzunehmen, um eine interkommunale Flächenanalyse zu initiieren, die entsprechende Vorteile bieten kann (Erfassung von Randbereichen, Reduzierung des Aufwands und damit auch der Kosten für die einzelnen Kommunen, mehr Flächen zur Abwägung stehen zur Verfügung). » Erstellung von Klimaschutzkonzepten (Angaben zu Klimaschutzzielen, technisch und wirtschaftlich umsetzbare Einsparpotenziale, konkrete Handlungsfelder, wie bspw. Wärme- und Kältenutzung, und Maßnahmen) » Einleitung und Durchführung einer kommunalen Wärmeplanung, u.a. zur Ermittlung der technischen Potenziale einzubindender erneuerbarer Energiequellen wie bspw. Solarthermie unter Berücksichtigung von Ausschlusskriterien (siehe FAQ 3.8)

Asma Sohail2023-08-21T09:33:59+02:00Montag, 21. August, 2023|

Klimahacks No. 7

Klimahacks No. 7 Mach dein Projekt zu solaren Wärmenetzen In Ausgabe No. 7 der #Klimahacks-Reihe rückt das Potenzial solarer Wärmenetze in den Mittelpunkt. Mit einem Anteil von etwa 50 Prozent am Endenergieverbrauch ist die Wärmeenergie eine wichtige Stellschraube bei der Erreichung der nationalen Klimaschutzziele. Da vor allem in den Städten und Gemeinden ein Großteil der Wärmeenergie verbraucht wird, rücken zentrale Wärmenetze aus erneuerbaren Wärmequellen, wie etwa Solarthermie-Anlagen, immer stärker in den kommunalen Fokus. Genau hier setzt die neue Ausgabe an und zeigt anhand aktueller Grafiken, Studien, Veröffentlichungen und einer Schritt-für-Schritt-Anleitung, wie der Weg zum solaren Wärmenetz auf kommunaler Ebene gelingen kann. Zielgruppe dieser Publikation sind sowohl Klimaschutz-Einsteigerkommunen als auch neue und altgediente Klimaschutzmanagerinnen und -manager, die sich inspirieren lassen möchten.

Julian Kuntze2023-06-22T11:15:23+02:00Freitag, 1. Januar, 2021|

Wärmenetze mit erneuerbaren Energien – klimaneutral und zukunftsfähig

WÄRMENETZE MIT ERNEUERBAREN ENERGIEN Klimaneutral und zukunftsfähig Solarthermie Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Gefördert durch: Gute Gründe für ein Wärmenetz mit erneuerbaren Energien in Ihrer Kommune Projektpartner: Regionale Wertschöpfung durch Wärmenetze Schon in kleinen Ortschaften summiert sich der jährliche Mittelabuss für fossile Energieträger auf mehrere Hunderttausend Euro. Diese Mittel können in der Region verbleiben! Sie können zum Beispiel den lokalen Land- und Forstwirtschaftsbetrieben zugutekommen oder bei Bau und Betrieb der Versorgung Arbeitsplätze schaen. Die Nutzung regionaler erneuerbarer Energiequellen ermöglicht die Verknüpfung von ökologischer mit ökonomischer Nachhaltigkeit und trägt zur regionalen Wohlstandssicherung bei. SolnetBW Für die Zukunft gut aufgestellt Wärmenetze mit erneuerbaren Energien sind gleich dreifach zukunftssicher: Der Wärmepreis ist stabil, da unabhängig von der kommenden CO-Bepreisung und künftigen Weltmarktentwicklungen. Auch gegen strengere gesetzlichen Anforderungen bei der Gebäudebeheizung sind Anschlussnehmer von Wärmenetzen gefeit. Und schlussendlich kann die Umstellung auf neue und innovative Technologien zentral erfolgen, wodurch Anpassungen schnell und einfach durchgeführt werden können. Für unser Gemeinwohl auf der richtigen Seite Ob im eigenen Haushalt oder der gesamten Kommune, die Wärme ist in der Regel für über die Hälfte des Energieverbrauchs verantwortlich. Ein Anschluss an ein Wärmenetz mit erneuerbaren Energien kann daher einen eektiven, schnellen und nachhaltigen Beitrag zum kommunalen Klimaschutz leisten. Durch die gemeinsame Sache vor Ort steuern wir den Importen fossiler Energien und den Verteilungskonikten in deren Herkunftsländern entgegen. Nahwärme ist bequem und günstig Die Wärme für das Eigenheim kann bequem und einfach über das Wärmenetz bezogen werden, wie dies schon überall bei Wasser und Strom üblich ist. Es entfallen lästige Wartungs- und Instandhaltungsarbeiten am eigenen Heizkessel im Keller. Neben den eingesparten Kosten wird zudem weiterer Platz im Keller frei. Der Anschluss an das Wärmenetz benötigt im Haus nur eine kompakte Wärmeübergabestation. Übrigens werden heute Glasfaserkabel für schnelles Internet meist mit verlegt. Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Wärmenetze mit erneuerbaren Energien sind eine Lösung für die nachhaltige Wärmeversorgung in ihrer Kommune oder Stadt! Projektpartner: Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Biomasse Abwärme Geothermie Jetzt gemeinsam anpacken! Gefördert durch: SolnetBW WÄRMENETZE MIT ERNEUERBAREN ENERGIEN Klimaneutral und zukunftsfähig Solarthermie Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen. Gefördert durch: Gute Gründe für ein Wärmenetz mit erneuerbaren Energien in Ihrer Kommune Projektpartner: Regionale Wertschöpfung durch Wärmenetze Schon in kleinen Ortschaften summiert sich der jährliche Mittelabuss für fossile Energieträger auf mehrere Hunderttausend Euro. Diese Mittel können in der Region verbleiben! Sie können zum Beispiel den lokalen Land- und Forstwirtschaftsbetrieben zugutekommen oder bei Bau und Betrieb der Versorgung Arbeitsplätze schaen. Die Nutzung regionaler erneuerbarer Energiequellen ermöglicht die Verknüpfung von ökologischer mit ökonomischer Nachhaltigkeit und trägt zur regionalen Wohlstandssicherung bei. SolnetBW Für die Zukunft gut aufgestellt Wärmenetze mit erneuerbaren Energien sind gleich dreifach zukunftssicher: Der Wärmepreis ist stabil, da unabhängig von der kommenden CO-Bepreisung und künftigen Weltmarktentwicklungen. Auch gegen strengere gesetzlichen Anforderungen bei der Gebäudebeheizung sind Anschlussnehmer von Wärmenetzen gefeit. Und schlussendlich kann die Umstellung auf neue und innovative Technologien zentral erfolgen, wodurch Anpassungen schnell und einfach durchgeführt werden können. Für unser Gemeinwohl auf der richtigen Seite Ob im eigenen Haushalt oder der gesamten Kommune, die Wärme ist in der Regel für über die Hälfte des Energieverbrauchs verantwortlich. Ein Anschluss an ein Wärmenetz mit erneuerbaren Energien kann daher einen eektiven, schnellen und nachhaltigen Beitrag zum kommunalen Klimaschutz leisten. Durch die gemeinsame Sache vor Ort steuern wir den Importen fossiler Energien und den Verteilungskonikten in deren Herkunftsländern entgegen. Nahwärme ist bequem und günstig Die Wärme für das Eigenheim kann bequem und einfach über das Wärmenetz bezogen werden, wie dies schon überall bei Wasser und Strom üblich ist. Es entfallen lästige Wartungs- und Instandhaltungsarbeiten am eigenen Heizkessel im Keller. Neben den eingesparten Kosten wird zudem weiterer Platz im Keller frei. Der Anschluss an das Wärmenetz benötigt im Haus nur eine kompakte Wärmeübergabestation. Übrigens werden heute Glasfaserkabel für schnelles Internet meist mit verlegt. Diese Materialien wurden im Rahmen des Fördervorhabens SolnetBW II erstellt. Weitere Informationen nden Sie auf www.solnetbw.de oder kontaktieren Sie uns unter info@solnetbw.de. Gefördert mit Mitteln des Landes Baden-Württemberg durch den beim Karlsruher Institut für Technologie eingerichteten Projektträger. Die alleinige Verantwortung für den Inhalt dieser Publikation liegt bei den AutorInnen. Sie gibt nicht unbedingt die Meinung des Fördermittelgebers wieder. Weder der Fördermittelgeber noch die AutorInnen übernehmen Verantwortung für jegliche Verwendung der darin enthaltenen Informationen.

Julian Kuntze2023-03-22T11:50:52+01:00Mittwoch, 1. Januar, 2020|
Nach oben